, ? La puce microfluidique utilisée lors des expériences contient : 1. un tube capillaire en verre de diamètre interne 400 µm pour le canal d'étude

, 2. une phase continue composée d'eau distillée avec 2 CMC de SDS

, phase dispersée composée d'huile, p.72

, 4. un wafer imprimé d'un circuit électrique générant un gradient thermique de 5°C /mm

. ?-l', étude a été effectué pour : 1. des nombres capillaires entre 10 ?9 et 10 ?5

, 2. des vitesses de gouttes entre 0.1 µm/s et 300 µm/s

, 3. des longueurs de gouttes entre 500 µm et 1500 µm

, ? Le confinement dans un tube capillaire à section circulaire ne permet pas au liquide de circuler autour de la bulle, Les contraintes visqueuses sont trop importantes pour voir un effet significatif de la contrainte thermocapillaire

, ? Le gradient thermique généré n'est pas suffisant pour observer des modifications dans la dynamique de goutte pour des nombres capillaires supérieurs à 10 ?6

, ? La pression de disjonction limite notre étude à des nombres capillaires supérieurs à 10 ?6 , une épaisseur de coupure doit être introduite

. .. , Calibration de la hauteur de résine par spin coating

. .. , Adimensionnalisation de l'équation différentielle, p.107

. La-théorie-de-landau-levich-derjaguin,

. .. Conditions-aux-limites,

.. .. Profil-du-ménisque-statique,

. .. Profil-du-ménisque-dynamique, , p.113

. .. Loi-de-landau-levich-derjaguin, , vol.118

, Détail de l'intégration du champ de vitesse dans le film de lubrification, p.120

. .. , Résolution numérique de l'équation de lubrification, vol.121

, Détermination de la fonction ?(x)

. .. Méthode, 123 10.2 Analyse statistique d'une série de mesures

%. , 1 ) <=> h ( x )

%. , 2 ) <=> dh/dx ( x )

%. , 3 ) <=> t ( H_av ( : , 1 ) , X_av , ' b ' ) l ( ' x^ * ' )

. Im,

, X_av , ' r ' ) t (H_av

K. Abe, K. Suzuki, and D. Citterio, Inkjet-printed microfluidic multianalyte chemical sensing paper, Analytical chemistry, vol.80, issue.18, pp.6928-6934, 2008.

S. Vladimir, G. M. Ajaev, and . Homsy, Modeling shapes and dynamics of confined bubbles

, Annu. Rev. Fluid Mech, vol.38, pp.277-307, 2006.

O. Atasi, B. Haut, S. Dehaeck, A. Dewandre, D. Legendre et al., How to measure the thickness of a lubrication film in a pancake bubble with a single snapshot ?, Applied Physics Letters, vol.113, issue.17, p.173701, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02094314

L. Landau and B. Levich, Dragging of a liquid by a moving plate, Acta Physicochim. URSS, vol.17, p.42, 1942.

J. Baret, Surfactants in droplet-based microfluidics, Lab on a Chip, vol.12, issue.3, pp.422-433, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02148769

N. Charles, F. Baroud, R. Gallaire, and . Dangla, Dynamics of microfluidic droplets, Lab on a Chip, vol.10, issue.16, pp.2032-2045, 2010.

. Gk and . Batchelor, Brownian diffusion of particles with hydrodynamic interaction, Journal of Fluid Mechanics, vol.74, issue.1, pp.1-29, 1976.

J. David, . Beebe, A. Glennys, G. Mensing, and . Walker, Physics and applications of microfluidics in biology, Annual review of biomedical engineering, vol.4, issue.1, pp.261-286, 2002.

J. Nupura-s-bhise, V. Ribas, Y. S. Manoharan, A. Zhang, S. Polini et al., Organ-on-a-chip platforms for studying drug delivery systems, Journal of Controlled Release, vol.190, pp.82-93, 2014.

. Mj-boussinesq, Sur l'existence d'une viscosité superficielle, dans la mince couche de transition séparant un liquide d'un autre fluide contigu, Ann. Chim. Phys, vol.29, pp.349-357, 1913.

H. Brenner, Interfacial transport processes and rheology, 2013.

. Fp-bretherton, The motion of long bubbles in tubes, Journal of Fluid Mechanics, vol.10, issue.02, pp.166-188, 1961.

, Henrik Bruus. Theoretical microfluidics, vol.18, 2008.

I. Cantat, Liquid meniscus friction on a wet plate : Bubbles, lamellae, and foams, Physics of Fluids, vol.25, issue.3, p.31303, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00819785

L. Champougny, Génération et rupture de films liquides minces, 2015.

R. Dangla, F. Gallaire, and C. N. Baroud, Microchannel deformations due to solvent-induced pdms swelling, Lab on a Chip, vol.10, issue.21, pp.2972-2978, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01020670

P. Daripa and G. Pa?a, The effect of surfactant on the motion of long bubbles in horizontal capillary tubes, Journal of Statistical Mechanics : Theory and Experiment, issue.02, p.2002, 2010.

S. Nikolai-d-denkov, K. Tcholakova, . Golemanov, A. Kp-ananthpadmanabhan, and . Lips, The role of surfactant type and bubble surface mobility in foam rheology, Soft Matter, vol.5, issue.18, pp.3389-3408, 2009.

B. Derjaguin and . Landau, The theory of stability of highly charged lyophobic sols and coalescence of highly charged particles in electrolyte solutions, Acta Physicochim. URSS, vol.14, p.58, 1941.

B. Derjaguin and . Obuchov, Ultramicrometric analysis of solvate layer and elementary expansion effects, Acta Physicochimica URSS, vol.5, issue.1, 1936.

. Bvcr-derjaguin, Thickness of liquid layer adhering to walls of vessels on their emptying and the theory of photo-and motion-picture film coating, CR, vol.39, pp.13-16, 1943.

F. Fairbrother and A. E. Stubbs, 119. studies in electro-endosmosis. part vi. the â??bubble-tubeâ?? method of measurement, Journal of the Chemical Society (Resumed), pp.527-529, 1935.

J. P. Fang, The dynamic surface tension of sds-dodecanol mixtures : 1. the submicellarsystems. Colloids and surfaces, vol.65, pp.113-120, 1992.

J. P. Fang, The dynamic surface tension of sds-dodecanol mixtures 2. micellar sds-dodecanol mixtures. Colloids and surfaces, vol.65, pp.121-129, 1992.

P. Garstecki, J. Michael, . Fuerstman, A. Howard, G. M. Stone et al., Formation of droplets and bubbles in a microfluidic t-junction-scaling and mechanism of break-up, Lab on a Chip, vol.6, issue.3, pp.437-446, 2006.

J. Willard-gibbs and ;. J. Gibbs, The scientific papers of, Longmans, Green and Company, vol.1, 1906.

H. L. Goldsmith and . Mason, The microrheology of dispersions, Rheology, pp.85-250, 1967.

. Sr-hodges, J. M. Jensen, and . Rallison, The motion of a viscous drop through a cylindrical tube, Journal of fluid mechanics, vol.501, pp.279-301, 2004.

C. Huang, Y. Chen, C. Wang, T. Chou, and G. Lee, Integrated microfluidic systems for automatic glucose sensing and insulin injection, Sensors and Actuators B : Chemical, vol.122, issue.2, pp.461-468, 2007.

A. Huerre, Migration de gouttes en microfluidique : caractérisation et applications, 2015.

A. Huerre, O. Theodoly, A. M. Leshansky, M. Valignat, I. Cantat et al., Droplets in microchannels : dynamical properties of the lubrication film, Physical review letters, vol.115, issue.6, p.64501, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01201928

A. Huerre, M. Valignat, O. Maggs, M. Theodoly, and . Jullien,

, Applied Physics Letters, vol.111, issue.22, p.221601, 2017.

D. Huh, D. Benjamin, A. Matthews, M. Mammoto, H. Montoya-zavala et al., Reconstituting organ-level lung functions on a chip, Science, vol.328, issue.5986, pp.1662-1668, 2010.

J. Husny and J. , The effect of elasticity on drop creation in t-shaped microchannels, Journal of non-newtonian fluid mechanics, vol.137, issue.1-3, pp.121-136, 2006.

J. Husny, H. Jin, C. Erol, J. Harvey, and . Cooper-white, The creation of drops in t-shaped microfluidic devices with the "modified"laser-liga technique : I. fabrication. Smart materials and structures, vol.15, p.117, 2005.

N. Jaensson and J. Vermant, Tensiometry and rheology of complex interfaces, Current opinion in colloid & interface science, 2018.

. Id-johnston, . Mccluskey, M. C. Tan, and . Tracey, Mechanical characterization of bulk sylgard 184 for microfluidics and microengineering, Journal of Micromechanics and Microengineering, vol.24, issue.3, p.35017, 2014.

R. Joulié, Mécanique des fluides appliquée. Ellipses/Marketing, 1998.

T. Kanai and M. Tsuchiya, Microfluidic devices fabricated using stereolithography for preparation of monodisperse double emulsions, Chemical Engineering Journal, vol.290, pp.400-404, 2016.

A. Karbalaei, R. Kumar, and H. Cho, Thermocapillarity in microfluidics -a review. Micromachines, vol.7, p.13, 2016.

R. Karnik, F. Gu, P. Basto, C. Cannizzaro, L. Dean et al., Microfluidic platform for controlled synthesis of polymeric nanoparticles, Nano letters, vol.8, issue.9, pp.2906-2912, 2008.

S. George and . Kell, Density, thermal expansivity, and compressibility of liquid water from 0. deg. to 150. deg.. correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale, Journal of Chemical and Engineering Data, vol.20, issue.1, pp.97-105, 1975.

J. Kestin, M. Sokolov, and W. Wakeham, Viscosity of liquid water in the range-8 c to 150 c, Journal of Physical and Chemical Reference Data, vol.7, issue.3, pp.941-948, 1978.

J. Kim, H. Hwang, S. Hahm, and D. Khang, Hydrophobically recovered and contact printed siloxane oligomers for general-purpose surface patterning

, Langmuir, vol.26, issue.15, pp.13015-13019, 2010.

G. M. Anne-r-kopf-sill and . Homsy, Bubble motion in a hele-shaw cell. The Physics of fluids, vol.31, pp.18-26, 1988.

K. Kwapiszewska, M. Michalczuk, . Rybka, Z. Kwapiszewski, and . Brzózka, A microfluidic-based platform for tumour spheroid culture, monitoring and drug screening, Lab on a Chip, vol.14, issue.12, pp.2096-2104, 2014.

E. Lajeunesse and G. M. Homsy, Thermocapillary migration of long bubbles in polygonal tubes. ii. experiments, Physics of Fluids, vol.15, issue.2, pp.308-314, 2003.

D. Langevin, Rheology of adsorbed surfactant monolayers at fluid surfaces, Annual Review of Fluid Mechanics, vol.46, pp.47-65, 2014.

L. Chantal, . Tensioactifs, and . Ed, , 1995.

Y. Liao, Y. Li, Y. Chang, C. Huang, and H. Wei, Speeding up thermocapillary migration of a confined bubble by wall slip, Journal of Fluid Mechanics, vol.746, pp.31-52, 2014.

. Victor-a-lifton, Microfluidics : an enabling screening technology for enhanced oil recovery (eor), Lab on a Chip, vol.16, issue.10, pp.1777-1796, 2016.

M. Loewenberg and . Hinch, Numerical simulation of a concentrated emulsion in shear flow, Journal of Fluid Mechanics, vol.321, pp.395-419, 1996.

A. Mazouchi and G. M. Homsy, Thermocapillary migration of long bubbles in cylindrical capillary tubes, Physics of Fluids, vol.12, issue.3, pp.542-549, 2000.

V. Miralles, A. Huerre, F. Malloggi, and M. Jullien, A review of heating and temperature control in microfluidic systems : techniques and applications
URL : https://hal.archives-ouvertes.fr/hal-02172355

, Diagnostics, vol.3, issue.1, pp.33-67, 2013.

V. Miralles, E. Rio, I. Cantat, and M. Jullien, Investigating the role of a poorly soluble surfactant in a thermally driven 2d microfoam, Soft matter, vol.12, issue.33, pp.7056-7062, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01370412

V. Miralles, E. Rio, I. Cantat, and M. Jullien, Investigating the role of a poorly soluble surfactant in a thermally driven 2d microfoam, Soft matter, vol.12, issue.33, pp.7056-7062, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01370412

. James-e-monogan, Political analysis using R, 2015.

T. Nisisako, T. Torii, and T. Higuchi, Droplet formation in a microchannel network, Lab on a Chip, vol.2, issue.1, pp.24-26, 2002.

W. Teri, C. Odom, . Love, B. Daniel, . Wolfe et al.,

, Langmuir, vol.18, issue.13, pp.5314-5320, 2002.

T. D. Jordan-t-petkov, B. E. Gurkov, R. Campbell, and . Borwankar, Dilatational and shear elasticity of gel-like protein layers on air/water interface

, Langmuir, vol.16, issue.8, pp.3703-3711, 2000.

L. Quaranta, Dictionnaire de physique expérimentale : Tome I -La Mécanique, 2002.

N. Quennouz, J. Ryba, B. Argillier, Y. Herzhaft, N. Peysson et al., Microfluidic study of foams flow for enhanced oil recovery (eor). Oil & Gas Science and Technology-Revue d, IFP Energies nouvelles, vol.69, issue.3, pp.457-466, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01067830

J. Ratulowski and H. Chang, Marangoni effects of trace impurities on the motion of long gas bubbles in capillaries, Journal of Fluid Mechanics, vol.210, pp.303-328, 1990.

B. Reichert, Dynamique d'une goutte 2d dans une cellule de hele-shaw, 2017.
URL : https://hal.archives-ouvertes.fr/tel-02365250

B. Reichert, A. Huerre, O. Theodoly, M. Valignat, I. Cantat et al., Topography of the lubrication film under a pancake droplet travelling in a hele-shaw cell, Journal of Fluid Mechanics, vol.850, pp.708-732, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01861352

. Ba-remington, . Weber, . Sw-haan, . Kilkenny, . Sg-glendinning et al., Laser-driven hydrodynamic instability experiments, Physics of Fluids B : Plasma Physics, vol.5, issue.7, pp.2589-2595, 1993.

E. Rio, Stabilité des mousses : quelques expériences montrant l'influence de la rhéologie de surface, 2013.

G. Nonato, C. Santos, and A. C. Danac, RBS Science and Technology Series -Investigatory Physics, vol.4, 2006.

D. Jeffrey and . Scargle, Publication bias (the" file-drawer problem") in scientific inference. arXiv preprint physics/9909033, 1999.

B. Scheid, J. Delacotte, B. Dollet, E. Rio, F. Restagno et al., The role of surface rheology in liquid film formation, Europhysics Letters), vol.90, issue.2, p.24002, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00495481

F. Schneider, . Fellner, U. Wilde, and . Wallrabe, Mechanical properties of silicones for mems, Journal of Micromechanics and Microengineering, vol.18, issue.6, p.65008, 2008.

K. Schroen, O. Bliznyuk, K. Muijlwijk, S. Sahin, and C. C. Berton-carabin, Microfluidic emulsification devices : from micrometer insights to large-scale food emulsion production, Current Opinion in Food Science, vol.3, pp.33-40, 2015.

. Le-scriven, Dynamics of a fluid interface equation of motion for newtonian surface fluids, Chemical Engineering Science, vol.12, issue.2, pp.98-108, 1960.

B. Selva, I. Cantat, and M. Jullien, Temperature-induced migration of a bubble in a soft microcavity, Physics of fluids, vol.23, issue.5, p.52002, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00713709

B. Selva, J. Marchalot, and M. Jullien, An optimized resistor pattern for temperature gradient control in microfluidics, Journal of Micromechanics and Microengineering, vol.19, issue.6, p.65002, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02001686

K. Rhutesh, H. Shah, A. C. Shum, D. Rowat, J. J. Lee et al., Designer emulsions using microfluidics, Materials Today, vol.11, issue.4, pp.18-27, 2008.

Q. Amy, B. Shen, . Gleason, H. Gareth, H. Mckinley et al., Fiber coating with surfactant solutions, Physics of Fluids, vol.14, issue.11, pp.4055-4068, 2002.

K. Mysels and K. J. Shinoda, Frankel. soap films : Studies of their thinning, 1959.

J. Sivasamy, T. Wong, N. Nguyen, and L. Kao, An investigation on the mechanism of droplet formation in a microfluidic t-junction

, Microfluidics and nanofluidics, vol.11, issue.1, pp.1-10, 2011.

O. Skurtys and . Aguilera, Applications of microfluidic devices in food engineering, Food Biophysics, vol.3, issue.1, pp.1-15, 2008.

M. Todd, . Squires, and . Stephen-r-quake, Microfluidics : Fluid physics at the nanoliter scale. Reviews of modern physics, vol.77, p.977, 2005.

V. Srinivasan, K. Vamsee, R. Pamula, and . Fair, An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids, Lab on a Chip, vol.4, issue.4, pp.310-315, 2004.

V. Srinivasan, K. Vamsee, . Pamula, G. Michael, R. Pollack et al., Clinical diagnostics on human whole blood, plasma, serum, urine, saliva, sweat, and tears on a digital microfluidic platform, Proc. MicroTAS, pp.1287-1290, 2003.

D. Kj-stebe and . Barthes-biesel, Marangoni effects of adsorption-desorption controlled surfactants on the leading end of an infinitely long bubble in a capillary, Journal of Fluid Mechanics, vol.286, pp.25-48, 1995.

C. V. Sternling and L. E. Scriven, Interfacial turbulence : hydrodynamic instability and the marangoni effect, AIChE Journal, vol.5, issue.4, pp.514-523, 1959.

P. Tabeling, Introduction to microfluidics, 2005.

S. Tanveer, The effect of surface tension on the shape of a hele-shaw cell bubble. The Physics of fluids, vol.29, pp.3537-3548, 1986.

G. Taylor and . Saffman, A note on the motion of bubbles in a hele-shaw cell and porous medium, The Quarterly Journal of Mechanics and Applied Mathematics, vol.12, issue.3, pp.265-279, 1959.

S. Teh, R. Lin, . Lung-hsin, A. Hung, and . Lee, Droplet microfluidics. Lab on a Chip, vol.8, issue.2, pp.198-220, 2008.

T. Gary-f-teletzke, L. E. Davis, and . Scriven, Wetting hydrodynamics. Revue de Physique Appliquee, vol.23, pp.989-1007, 1988.

O. Theodoly, Z. Huang, and M. Valignat, New modeling of reflection interference contrast microscopy including polarization and numerical aperture effects : application to nanometric distance measurements and object profile reconstruction, Langmuir, vol.26, issue.3, pp.1940-1948, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00440660

A. Gregory and . Tokaty, A history and philosophy of fluid mechanics. Courier Corporation, 1994.

. Vincent-van-duinen, J. Sebastiaan, J. Trietsch, P. Joore, T. Vulto et al., Microfluidic 3d cell culture : from tools to tissue models, Current opinion in biotechnology, vol.35, pp.118-126, 2015.

J. Th and G. Verwey, Overbeek, theory of stability of lyophobic colloids, 1954.

J. A. Da-white and . Tallmadge, Theory of drag out of liquids on flat plates, Chemical Engineering Science, vol.20, issue.1, pp.33-37, 1965.

M. George and . Whitesides, The origins and the future of microfluidics, Nature, vol.442, issue.7101, p.368, 2006.

H. Wong, S. Cj-radke, and . Morris, The motion of long bubbles in polygonal capillaries. part 1. thin films, Journal of Fluid Mechanics, vol.292, pp.71-94, 1995.

H. Wong, S. Cj-radke, and . Morris, The motion of long bubbles in polygonal capillaries. part 2. drag, fluid pressure and fluid flow, Journal of Fluid Mechanics, vol.292, pp.95-110, 1995.

J. H. Xu, . Li, . Tan, G. S. Wang, and . Luo, Preparation of highly monodisperse droplet in a t-junction microfluidic device, AIChE journal, vol.52, issue.9, pp.3005-3010, 2006.