T. Akasaka, M. Akasaka, and F. Nakamura, Scale-independent significance of river and 373 riparian zones on three sympatric Myotis species in an agricultural landscape, Biol, 2012.

. Conserv, , vol.145, pp.15-23

F. Altermatt and D. Ebert, Reduced flight-to-light behaviour of moth populations exposed 376 to long-term urban light pollution, Biol. Lett, vol.12, pp.3-6, 2016.

,

L. Ancillotto, L. Bosso, V. B. Salinas-ramos, and D. Russo, The importance of ponds for 379 the conservation of bats in urban landscapes, Landsc. Urban Plan, vol.190, p.103607, 2019.

,

C. Azam, C. Kerbiriou, A. Vernet, J. Julien, Y. Bas et al., , p.382

I. , Is part-night lighting an effective measure to limit the impacts of artificial 383 lighting on bats?, Glob. Chang. Biol, vol.21, 2015.

C. Azam, C. Kerbiriou, A. Vernet, J. F. Julien, Y. Bas et al., , p.385

L. Viol and I. , Is part-night lighting an effective measure to limit the impacts of 386 artificial lighting on bats?, Glob. Chang. Biol, vol.21, pp.4333-4341, 2015.

,

C. Azam, I. Le-viol, Y. Bas, G. Zissis, A. Vernet et al., , 2018.

, Evidence for distance and illuminance thresholds in the effects of artificial lighting on 390 bat activity, Landsc. Urban Plan, vol.175, pp.123-135

,

C. Azam, I. Le-viol, J. F. Julien, Y. Bas, and C. Kerbiriou, Disentangling the relative 393 effect of light pollution, impervious surfaces and intensive agriculture on bat activity 394 with a national-scale monitoring program, Landsc. Ecol, vol.31, pp.2471-2483, 2016.

,

Y. Bas, D. Bas, and J. Julien, Tadarida : A Toolbox for Animal Detection on Acoustic, vol.397, 2017.

, Recordings. J. open Res. Softw, vol.5, pp.1-8

J. Bennie, T. W. Davies, D. Cruse, R. Inger, and K. J. Gaston, Artificial light at night 399 causes top-down and bottom-up trophic effects on invertebrate populations, J. Appl, 2018.

. Ecol, , vol.55, pp.2698-2706

F. Carrasco-rueda and B. A. Loiselle, Do riparian forest strips in modified forest 402 landscapes aid in conserving bat diversity?, Ecol. Evol, pp.4192-4209, 2019.

,

Z. M. Cravens, V. A. Brown, T. J. Divoll, J. G. Boyles, E. Abdullah et al., Illuminating prey selection in an insectivorous bat community, exposed to artificial 406 light at night, J. Appl. Ecol, vol.12, pp.3218-3221, 2017.

T. W. Davies, J. Bennie, and K. J. Gaston, Street lighting changes the composition of 408 invertebrate communities, Biol. Lett, vol.8, pp.764-767, 2012.

D. Jong, M. Caro, S. P. Gienapp, P. Spoelstra, K. Visser et al., Early Birds by Light 410 at Night: Effects of Light Color and Intensity on Daily Activity Patterns in Blue Tits, 2017.

, Biol. Rhythms, vol.32, pp.323-333

C. Dietz, O. Vonhelversen, and D. Nill, Bats ofBritain, Europe and Nortwest Africa, p.413, 2009.

N. C. Downs and P. A. Racey, The use by bats of habitat features in mixed, p.415, 2006.

N. Scotland, Acta chiropterologica, vol.8, p.8, 2006.

G. Eisenbeis, Artificial night lighting and insects: attraction of insects to streetlamps in 418 a rural setting in Germany, Ecological Consequences of Artificial Night Lighting 419, pp.281-304, 2006.

,

B. Farnworth, R. Meitern, J. Innes, and J. R. Waas, Increasing predation risk with light 422 reduces speed, exploration and visit duration of invasive ship rats, 2019.

,

R. Fox, The decline of moths in Great Britain: A review of possible causes, 2013.

, Conserv. Divers, vol.6, pp.5-19

K. D. Frank, Impact of Outdoor Lighting on Moths, J. Lepid. Soc, vol.2, pp.63-93, 1988.

,

K. J. Gaston, T. W. Davies, S. L. Nedelec, and L. A. Holt, Impacts of Artificial Light at 429 Night on Biological Timings, Annu. Rev. Ecol. Evol. Syst, vol.48, pp.49-68, 2017.

,

F. Gili, S. E. Newson, S. Gillings, D. E. Chamberlain, and J. A. Border, Bats in urbanising 432 landscapes: habitat selection and recommendations for a sustainable future, Biol, 2020.

, Conserv. 241, 108343

S. Götze, A. Denzinger, and H. Schnitzler, High frequency social calls indicate food 435 source defense in foraging Common pipistrelle bats, Sci. Rep, vol.10, p.5764, 2020.

,

S. D. Grindal, J. L. Morissette, and R. M. Brigham, Concentration of bat activity in riparian 438 habitats over an elevational gradient, Can. J. Zool, vol.77, pp.972-977, 1999.

,

U. Grodzinski, O. Spiegel, C. Korine, and M. W. Holderied, Context-dependent flight 441 speed: Evidence for energetically optimal flight speed in the bat Pipistrellus kuhlii?, 2009.

, Anim. Ecol, vol.78, pp.540-548

A. Guetté, L. Godet, M. Juigner, and M. Robin, Worldwide increase in Artificial Light At 444 Night around protected areas and within biodiversity hotspots, Biol. Conserv, vol.223, pp.97-445, 2018.

J. D. Hale, A. J. Fairbrass, T. J. Matthews, G. Davies, and J. P. Sadler, The ecological 447 impact of city lighting scenarios: Exploring gap crossing thresholds for urban bats, 2015.

C. , Biol, vol.21, pp.2467-2478

A. R. Hof, J. Snellenberg, and P. W. Bright, Food or fear? Predation risk mediates edge 450 refuging in an insectivorous mammal, Anim. Behav, vol.83, pp.1099-1106, 2012.

,

F. Hölker, C. Wolter, E. K. Perkin, and K. Tockner, Light pollution as a biodiversity 453 threat, Trends Ecol. Evol, vol.25, pp.681-682, 2010.

R. K. Ing, R. Colombo, G. Gembu, Y. Bas, J. Julien et al., , 2016.

, Echolocation Calls and Flight Behaviour of the Elusive Pied Butterfly Bat ( 456 Glauconycteris superba ), and New Data on Its Morphology and Ecology. Acta 457 Chiropterologica, vol.18, pp.477-488

A. Jechow and F. Hölker, How dark is a river? Artificial light at night in aquatic systems 459 and the need for comprehensive night-time light measurements, 2019.

, Water 1-19

G. Jones and J. Rydell, Foraging strategy and predation risk as factors influencing 462 emergence time in echolocating bats, Philos. Trans. R. Soc. B Biol. Sci, vol.346, pp.445-455, 1994.

,

C. Kerbiriou, K. Barré, L. Mariton, J. Pauwels, G. Zissis et al., , 2020.

, Switching LPS to LED Streetlight May Dramatically Reduce Activity and Foraging of 466

, Bats. Diversity, vol.12

C. Kerbiriou, Y. Bas, I. Le-viol, R. Lorrillière, J. Mougnot et al., Bat Pass 468 Duration Measurement: An Indirect Measure of Distance of Detection, Diversity, vol.11, 2019.

E. Knop, L. Zoller, R. Ryser, C. Gerpe, M. Hörler et al., Artificial light at 471 night as a new threat to pollination, Nature, vol.548, pp.206-209, 2017.

,

J. C. Koblitz, Arrayvolution: using microphone arrays to study bats in the field, Can. J, 2018.

. Zool, , vol.96, pp.933-938

E. L. Koen, C. Minnaar, C. L. Roever, and J. G. Boyles, Emerging threat of the 21st 476 century lightscape to global biodiversity, Glob. Chang. Biol, vol.24, pp.2315-2324, 2018.

,

A. Lacoeuilhe, N. Machon, J. F. Julien, and C. Kerbiriou, Effects of hedgerows on bats 479 and bush crickets at different spatial scales, Acta Oecologica, vol.71, pp.61-72, 2016.

,

A. Lacoeuilhe, N. Machon, J. F. Julien, A. Le-bocq, and C. Kerbiriou, The influence of 482 low intensities of light pollution on bat communities in a semi-natural context, PLoS One, vol.483, issue.9, 2014.

A. Laforge, J. Pauwels, B. Faure, Y. Bas, C. Kerbiriou et al., , 2019.

, Reducing light pollution improves connectivity for bats in urban landscapes

. Ecol, , vol.34, pp.793-809

P. R. Lintott, N. Bunnefeld, and K. J. Park, Opportunities for improving the foraging 488 potential of urban waterways for bats, Biol. Conserv, vol.191, pp.224-233, 2015.

,

A. Lloyd, B. Law, and R. Goldingay, Bat activity on riparian zones and upper slopes in 491, 2006.

, Australian timber production forests and the effectiveness of riparian buffers, Biol

. Conserv, , vol.129, pp.207-220

T. R. Lookingbill, A. J. Elmore, K. A. Engelhardt, J. B. Churchill, E. Gates et al., , p.494

J. B. Johnson, Influence of wetland networks on bat activity in mixed-use 495 landscapes, Biol. Conserv, vol.143, pp.974-983, 2010.

C. Minnaar, J. G. Boyles, I. A. Minnaar, C. L. Sole, and A. E. Mckechnie, Stacking the 497 odds: Light pollution may shift the balance in an ancient predator-prey arms race, 2015.

, Appl. Ecol, vol.52, pp.522-531

J. Pauwels, I. Viol, . Le, C. Azam, N. Valet et al., , p.500

A. S. De and C. Kerbiriou, Accounting for artificial light impact on bat activity for a 501 biodiversity-friendly urban planning, Landsc. Urban Plan, vol.183, pp.12-25, 2019.

C. Penone, C. Kerbiriou, J. Julien, R. Julliard, N. Machon et al., , 2013.

, Urbanisation effect on Orthoptera: which scale matters?, Insect Conserv. Divers, vol.6, pp.319-505

E. K. Perkin, F. Hölker, and K. Tockner, The effects of artificial lighting on adult aquatic 507 and terrestrial insects, Freshw. Biol, vol.59, pp.368-377, 2014.

D. Pinaud, F. Claireau, M. Leuchtmann, and C. Kerbiriou, Modelling landscape 509 connectivity for greater horseshoe bat using an empirical quantification of resistance, 2018.

, Appl. Ecol, vol.55, pp.2600-2611

T. Polak, C. Korine, S. Yair, and M. W. Holderied, Differential effects of artificial 512 lighting on flight and foraging behaviour of two sympatric bat species in a desert, 2011.

. Zool, , vol.285, pp.21-27

. R-core-team, R: A Language and Environment for Statistical Computing, 2018.

. Document,

. Found, . Stat, . Comput, and A. Vienna,

D. Russo, L. Ancillotto, L. Cistrone, N. Libralato, A. Domer et al., , 2018.

, Effects of artificial illumination on drinking bats: a field test in forest and desert habitats

, Anim. Conserv. 1-10

D. Russo, L. Cistrone, N. Libralato, C. Korine, G. Jones et al., Adverse 520 effects of artificial illumination on bat drinking activity, Anim. Conserv, vol.20, pp.492-501, 2017.

,

D. Russo, F. Cosentino, F. Festa, F. De-benedetta, B. Pejic et al., Artificial illumination near rivers may alter bat-insect trophic interactions, vol.523, 2019.

, Environ. Pollut, vol.252, pp.1671-1677

J. Rydell, Exploitation of Insects around Streetlamps by Bats in Sweden, Funct. Ecol, vol.526, issue.6, 1992.

V. B. Salinas-ramos, L. Ancillotto, L. Bosso, V. Sánchez-cordero, and D. Russo, , 2020.

, Interspecific competition in bats: state of knowledge and research challenges

, Rev, vol.50, pp.68-81

C. Sirami, D. S. Jacobs, and G. S. Cumming, Artificial wetlands and surrounding habitats 531 provide important foraging habitat for bats in agricultural landscapes in the Western 532, 2013.

S. Cape and . Africa, Biol. Conserv, vol.164, pp.30-38

,

P. G. Smith and P. A. Racey, Natterer's bats prefer foraging in broad-leaved woodlands 535 and river corridors, J. Zool, vol.275, pp.314-322, 2008.

K. Spoelstra, J. J. Ramakers, N. E. Van-dis, and M. E. Visser, No effect of artificial light 538 of different colors on commuting Daubenton's bats (Myotis daubentonii) in a choice 539 experiment, J. Exp. Zool. Part A Ecol. Integr. Physiol, vol.329, pp.506-510, 2018.

,

K. Spoelstra, R. H. Van-grunsven, J. J. Ramakers, K. B. Ferguson, T. Raap et al., , p.542

M. Veenendaal, E. M. Visser, and M. E. , Response of bats to light with different 543 spectra: light-shy and agile bat presence is affected by white and green, 2017.

, Proc. R. Soc. B Biol. Sci, vol.284, 20170075.

V. L. Todd and L. D. Williamson, Habitat usage of Daubenton's bat (Myotis 546 daubentonii), common pipistrelle (Pipistrellus pipistrellus), and soprano pipistrelle 547 (Pipistrellus pygmaeus) in a North Wales upland river catchment, Ecol. Evol, p.4863, 2019.

A. Wakefield, M. Broyles, E. L. Stone, G. Jones, and S. Harris, Experimentally 550 comparing the attractiveness of domestic lights to insects: Do LEDs attract fewer insects 551 than conventional light types?, Ecol. Evol, vol.6, pp.8028-8036, 2016.

,

M. R. Zeale, E. L. Stone, E. Zeale, W. J. Browne, S. Harris et al., , 2018.

, Experimentally manipulating light spectra reveals the importance of dark corridors for 555 commuting bats, Glob. Chang. Biol, vol.24, pp.5909-5918

A. Zuur, E. Ieno, and C. Elphick, A protocol for data exploration to avoid common 557 statistical problems, Methods Ecol. Evol, vol.1, pp.3-14, 2010.