A. Alaei, D. Conte, M. Blumenstein, and R. Raveaux, Document Image Quality Assessment Based on Texture Similarity Index, 2016 12th IAPR Workshop on Document Analysis Systems (DAS), p.132137, 2016.
DOI : 10.1109/DAS.2016.33

URL : https://hal.archives-ouvertes.fr/hal-01429042

A. Alaei, D. Conte, and R. Raveaux, Document image quality assessment based on improved gradient magnitude similarity deviation, 2015 13th International Conference on Document Analysis and Recognition (ICDAR), p.176180, 2015.
DOI : 10.1109/ICDAR.2015.7333747

URL : https://hal.archives-ouvertes.fr/hal-01224875

A. Alaei and M. Delalandre, A Complete Logo Detection/Recognition System for Document Images, 2014 11th IAPR International Workshop on Document Analysis Systems, p.324328, 2014.
DOI : 10.1109/DAS.2014.79

URL : https://hal.archives-ouvertes.fr/hal-01084097

A. Alaei, P. Nagabhushan, and U. Pal, Piece-wise painting technique for line segmentation of unconstrained handwritten text: a specific study with Persian text documents, Pattern Analysis and Applications, vol.9, issue.1, p.381394, 2011.
DOI : 10.1109/TSMC.1979.4310076

T. K. Bhowmik, T. Paquet, and N. Ragot, OCR Performance Prediction Using a Bag of Allographs and Support Vector Regression, 2014 11th IAPR International Workshop on Document Analysis Systems, p.202206, 2014.
DOI : 10.1109/DAS.2014.72

URL : https://hal.archives-ouvertes.fr/hal-01085002

D. M. Chandler, Seven Challenges in Image Quality Assessment: Past, Present, and Future Research, ISRN Signal Processing, 2013.
DOI : 10.1007/s11554-010-0170-9

R. G. Mesquita, R. M. Silva, C. A. Mello, and P. B. Miranda, Parameter tuning for document image binarization using a racing algorithm, Expert Systems with Applications, vol.42, issue.5, p.25932603, 2015.
DOI : 10.1016/j.eswa.2014.10.039

A. Verikas, J. Lundström, M. Bacauskiene, and A. Gelzinis, Advances in computational intelligence-based print quality assessment and control in oset colour printing, Expert Systems with Applications, vol.38, p.1344113447, 2011.

M. Yang, T. Su, N. Pan, and Y. Yang, Systematic image quality assessment for sewer inspection, Expert Systems with Applications, vol.38, issue.3, p.17661776, 2011.
DOI : 10.1016/j.eswa.2010.07.103

C. Hale and E. Barney-smith, Human Image Preference and Document Degradation Models, Ninth International Conference on Document Analysis and Recognition (ICDAR 2007), p.257261, 2007.
DOI : 10.1109/ICDAR.2007.4378715

URL : http://scholarworks.boisestate.edu/cgi/viewcontent.cgi?article=1013&context=electrical_facpubs

H. Jégou, M. Douze, C. Schmid, and P. Pérez, Aggregating local descriptors into a compact image representation, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, p.33043311, 2010.
DOI : 10.1109/CVPR.2010.5540039

L. Kang, P. Ye, Y. Li, and D. Doermann, A deep learning approach to document image quality assessment, 2014 IEEE International Conference on Image Processing (ICIP), p.25702574, 2014.
DOI : 10.1109/ICIP.2014.7025520

URL : http://lampsrv02.umiacs.umd.edu/pubs/Papers/lekang14-DocIQA/lekang14-DocIQA.pdf

P. Koniusz, F. Yan, P. Gosselin, and K. Mikolajczyk, Higher-Order Occurrence Pooling for Bags-of-Words: Visual Concept Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.39, issue.2, p.313326, 2017.
DOI : 10.1109/TPAMI.2016.2545667

URL : https://hal.archives-ouvertes.fr/hal-01356149

J. Kumar, F. Chen, and D. Doermann, Sharpness estimation for document and scene images, Pattern Recognition (ICPR), 2012 21st International Conference on, p.32923295, 2012.

E. C. Larson and D. Chandler, Categorical image quality (csiq) database, 2010.

H. Lu, A. C. Kot, and Y. Q. Shi, Distance-Reciprocal Distortion Measure for Binary Document Images, IEEE Signal Processing Letters, vol.11, issue.2, p.228231, 2004.
DOI : 10.1109/LSP.2003.821748

URL : http://www.dsp.utoronto.ca/~haiping/Publication/DRDM.pdf

K. M. Macqueen, E. Mclellan, K. Kay, and B. Milstein, Codebook Development for Team-Based Qualitative Analysis, CAM Journal, vol.5, issue.2, p.3136, 1998.
DOI : 10.1177/1525822X9300500208

D. Martin, C. Fowlkes, D. Tal, and J. Malik, A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, p.416423, 2001.
DOI : 10.1109/ICCV.2001.937655

A. Mittal, A. K. Moorthy, and A. C. Bovik, No-Reference Image Quality Assessment in the Spatial Domain, IEEE Transactions on Image Processing, vol.21, issue.12, p.46954708, 2012.
DOI : 10.1109/TIP.2012.2214050

A. Mittal, R. Soundararajan, and A. C. Bovik, Making a ???Completely Blind??? Image Quality Analyzer, IEEE Signal Processing Letters, vol.20, issue.3, 2013.
DOI : 10.1109/LSP.2012.2227726

N. Nayef and J. Ogier, Metric-based no-reference quality assessment of heterogeneous document images, SPIE/IS&T Electronic Imaging (pp. 94020L94020L). International Society for Optics and Photonics, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01319901

T. Obafemi-ajayi and G. Agam, Character-Based Automated Human Perception Quality Assessment in Document Images, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol.42, issue.3, p.584595, 2012.
DOI : 10.1109/TSMCA.2011.2170417

M. Seeland, M. Rzanny, N. Alaqraa, J. Wäldchen, and P. Mäder, Plant species classication using ower imagesa comparative study of local feature representations, PloS one, vol.12, p.170629, 2017.

H. R. Sheikh, Image and video quality assessment research at live. http://live. ece. utexas, 2003.

Z. Wang and X. Shang, Spatial Pooling Strategies for Perceptual Image Quality Assessment, 2006 International Conference on Image Processing, p.29452948, 2006.
DOI : 10.1109/ICIP.2006.313136

W. Xue, L. Zhang, and X. Mou, Learning without Human Scores for Blind Image Quality Assessment, 2013 IEEE Conference on Computer Vision and Pattern Recognition, p.9951002, 2013.
DOI : 10.1109/CVPR.2013.133

URL : http://www4.comp.polyu.edu.hk/~cslzhang/paper/conf/QAC_CVPR13.pdf

P. Ye and D. Doermann, Learning features for predicting ocr accuracy, Pattern Recognition (ICPR), 2012 21st International Conference on, p.32043207, 2012.

P. Ye and D. Doermann, Document Image Quality Assessment: A Brief Survey, 2013 12th International Conference on Document Analysis and Recognition, p.723727, 2013.
DOI : 10.1109/ICDAR.2013.148

URL : http://lampsrv02.umiacs.umd.edu/pubs/Papers/pengye-13a/pengye-13a.pdf

P. Ye, J. Kumar, L. Kang, and D. Doermann, Unsupervised feature learning framework for no-reference image quality assessment, Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, p.10981105, 2012.

R. A. Young, The Gaussian derivative model for spatial vision: I. Retinal mechanisms, Spatial Vision, vol.2, issue.4, p.273293, 1987.
DOI : 10.1163/156856887X00222

L. Zhang, L. Zhang, X. Mou, and D. Zhang, Fsim: A feature similarity index for image quality assessment, IEEE transactions on Image Processing, vol.20, p.23782386, 2011.