. Abu-aisheh, A Graph Database Repository and Performance Evaluation Metrics for Graph Edit Distance, Graph-Based Representations in Pattern Recognition -10th IAPR-TC-15.Proceedings, pp.138-147, 2015.
DOI : 10.1007/978-3-319-18224-7_14

URL : https://hal.archives-ouvertes.fr/hal-01168809

A. Agresti, Analysis of ordinal categorical data, 2010.
DOI : 10.1002/9780470594001

. Bougleux, Graph edit distance as a quadratic assignment problem, Pattern Recognition Letters, vol.87, pp.38-46, 2017.
DOI : 10.1016/j.patrec.2016.10.001

URL : https://hal.archives-ouvertes.fr/hal-01613964

L. Brun, Greyc's chemistry dataset, 2016.

H. Bunke, On a relation between graph edit distance and maximum common subgraph, Pattern Recognition Letters, vol.18, issue.8, pp.689-694, 1997.
DOI : 10.1016/S0167-8655(97)00060-3

H. Bunke, Error correcting graph matching: on the influence of the underlying cost function, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.21, issue.9, pp.917-922, 1999.
DOI : 10.1109/34.790431

. Bunke, H. Bunke, and G. Allermann, Inexact graph matching for structural pattern recognition, Pattern Recognition Letters, vol.1, issue.4, pp.245-253, 1983.
DOI : 10.1016/0167-8655(83)90033-8

. Darwiche, A local branching heuristic for solving a Graph Edit Distance Problem, Computers & Operations Research, 2018.
DOI : 10.1016/j.cor.2018.02.002

URL : https://hal.archives-ouvertes.fr/hal-01587928

. Ferrer, Improving bipartite graph matching by assessing the assignment confidence, Pattern Recognition Letters, vol.65, pp.29-36, 2015.
DOI : 10.1016/j.patrec.2015.07.010

L. Fischetti, M. Fischetti, and A. Lodi, Local branching, Mathematical Programming, vol.98, issue.1-3, pp.23-47, 2003.
DOI : 10.1007/s10107-003-0395-5

D. Justice and A. Hero, A binary linear programming formulation of the graph edit distance, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.28, issue.8, pp.1200-1214, 2006.
DOI : 10.1109/TPAMI.2006.152

. Lerouge, New binary linear programming formulation to compute the graph edit distance, Pattern Recognition, vol.72, pp.254-265, 2017.
DOI : 10.1016/j.patcog.2017.07.029

URL : https://hal.archives-ouvertes.fr/hal-01619313

. Moreno-garcía, A Graph Repository for Learning Error-Tolerant Graph Matching, Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), pp.519-529, 2016.
DOI : 10.1109/34.531800

J. Munkres, Algorithms for the Assignment and Transportation Problems, Journal of the Society for Industrial and Applied Mathematics, vol.5, issue.1, pp.32-38, 1957.
DOI : 10.1137/0105003

R. , W. Raymond, J. W. Willett, and P. , Maximum common subgraph isomorphism algorithms for the matching of chemical structures, Journal of computeraided molecular design, issue.7, pp.16521-533, 2002.

. Riesen, Bipartite Graph Matching for Computing the Edit Distance of Graphs, International Workshop on Graph-Based Representations in Pattern Recognition, pp.1-12, 2007.
DOI : 10.1007/978-3-540-72903-7_1

. Sanfeliu, Graph-based representations and techniques for image processing and image analysis, Pattern Recognition, vol.35, issue.3, pp.639-650, 2002.
DOI : 10.1016/S0031-3203(01)00066-8

F. Serratosa, Computation of graph edit distance: Reasoning about optimality and speed-up, Image and Vision Computing, vol.40, pp.38-48, 2015.
DOI : 10.1016/j.imavis.2015.06.005

. Stauffer, A Survey on Applications of Bipartite Graph Edit Distance, International Workshop on Graph-Based Representations in Pattern Recognition, pp.242-252, 2017.
DOI : 10.1016/j.eswa.2012.07.067

. Zeng, Comparing stars, Proceedings of the VLDB Endowment, pp.25-36, 2009.
DOI : 10.14778/1687627.1687631