Viscoelasticity of Supramolecular Center-functionalized Polymer

Effect of the strength of Hydrogen Bonding Stickers

Xavier Callies

Costantino Creton, Guylaine Ducouret

AERC 2015 - Nantes
Supramolecular Polymers?

Supramolecular Chemistry

Self-assembly of small molecules by non covalent bonds (H-bonds, ionic...) in solution

Supramolecular Polymers?

Supramolecular Chemistry

Self-assembly of small molecules by non covalent bonds (H-bonds, ionic...) in solution

Polymer Physics

Association by covalent bonds of monomers

Supramolecular Polymers?

Supramolecular Chemistry

Self-assembly of small molecules by **non covalent** bonds (H-bonds, ionic...) in solution

Polymer Physics

Association by **covalent** bonds of monomers

Interest of Supramolecular Polymers?

Interactions between Stickers

Specific → Clusters, Aggregates, Networks or Nanostructures

Reversible → Strong dependency with their environment
Interest of Supramolecular Polymers?

Interactions between Stickers

- Specific
- Reversible

Clusters, Aggregates, Networks or Nanostructures

Strong dependency with their environment

A wide diversity of applications

Stimuli-responsive Materials

Self-healing by simple contact at RT

Challenge for all applications

How to link the **rheological** properties and the **chemical structure** of the polymer chain?

→ What is the effect of the **strength** of stickers on the rheological behavior?

\[K = \frac{k_a}{k_d} \]

Strength of Stickers

- Chemistry of stickers
- Polarity of Polymer Matrix
Background

Poly(butylacrylate) Copolymers

Weak or Strong Stickers

![Diagram showing chemical structures and graph with Ea vs. (Tref - Tg) in °C]

- Weak Stickers
- Strong Stickers
Background

Poly(butylacrylate) Copolymers

\[\text{Weak Stickers} \quad \text{or} \quad \text{Strong Stickers} \]

\[\text{Weak Stickers} \quad \text{or} \quad \text{Strong Stickers} \]

E\(_a\) [kJ/mol]

\[\text{Strong Stickers} \]

\[\text{Weak Stickers} \]

\[(T_{\text{ref}} - T_g) \, [^\circ C] \]

"\(T_g\) effect"

"\(T_g\) effect" + supramolecular network
Center-functionalized Polymers?

Self-assembly of stickers into **filaments** is favored

Predictable shape of the aggregates

Link the rheology and the supramolecular Chemistry
Center-functionalized Polymers?

Strategy of our Project

- Synthesis of monodisperse and linear center-functionalized polymers
- Change the molecular parameters in a highly controlled way
- Systematic characterization of the nanostructure and linear rheology.

Self-assembly of stickers into filaments is favored

Key-molecular parameters

1. Level of interactions: Two hydrogen bonding stickers.

- Bis-urea Xylene

 "Weak Sticker"

- Tri-Urea Toluene

 "Strong Sticker"
Key-molecular parameters

1. Level of interactions: Two hydrogen bonding stickers.

- Bis-urea Xylene
 "Weak Sticker"

- Tri-Urea Toluene
 "Strong Sticker"

2. The interacting moieties density: The size of the linear non polar chains

\[5 \text{ kg/mol} \leq M_w \leq 100 \text{ kg/mol} \quad \text{and} \quad 4\% \geq \text{Sticker (w\%)} \geq 0.2\% \]
Key-molecular parameters

1. Level of interactions: Two **hydrogen bonding** stickers.

 - **Bis-urea Xylene**
 "**Weak Sticker**"
 2nd Part

 - **Tri-Urea Toluene**
 "**Strong Sticker**"
 1st Part

2. the interacting moieties density: the **size** of the linear non polar chains

 - **PnBA**
 \[I_p \leq 1.4 \]

 \[5 \text{ kg/mol} \leq M_w \leq 100 \text{ kg/mol} \quad \leftrightarrow \quad 4\% \geq \text{Sticker (w\%)} \geq 0.2\% \]
T_g and Nanostructure for Strong Stickers

- No variation of T_g with M_n (between 5 and 100kg/mol): T_g = -49 ± 1°C (DSC)
T_g and Nanostructure for **Strong** Stickers

- No variation of T_g with M_n (between 5 and 100kg/mol): $T_g = -49 \pm 1^\circ C$ (DSC)

SAXS Investigation

No peak for $M_n \geq 40 \text{ kg/mol}$
T_g and Nanostructure for Strong Stickers

- No variation of T_g with M_n (between 5 and 100 kg/mol): $T_g = -49 \pm 1 \degree C$ (DSC)

SAXS Investigation

- I (u.a)
- q (nm$^{-1}$)
- No peak for $M_n \geq 40$ kg/mol

Self-assembly of stickers into filaments

- $M_n \leq 40$ kg/mol
 - Randomly Oriented Rods

- $M_n \geq 40$ kg/mol
 - Oriented Filaments
Rheology for Strong Stickers

\[b(T)G', b(T)G'' \text{ (Pa)} \]

- \(G' \) and \(G'' \) represent storage and loss moduli, respectively.

- \(a(T)w(\text{rad/s}) \) is the angular frequency.

- The graph shows different behaviors for material properties based on molecular weight:
 - \(M_n \leq 40\text{kg/mol} \)
 - Oriented Filaments
 - Dissipative
 - \(M_n \geq 40\text{kg/mol} \)
 - Randomly Oriented Rods
 - Viscoelastic Fluid

- Specific markers indicate different molecular weights:
 - 5kg/mol \(\times 1.6 \)
 - 20kg/mol \(\times 1 \)
 - 60kg/mol \(\times 0.5 \)
Shifts

Frozen Aggregates

Dissipative Relaxation of the side chains

Log (a_T)

\[T - T_{ref} (°C) \]

+ PnBA3U
- WLF PnBA

\[+5 \text{ kg/mol} \times 1,6 \]
\[+20 \text{ kg/mol} \times 1 \]
\[+60 \text{ kg/mol} \times 0,5 \]
$\omega \neq f(M_w)$

≈ 0.5

$G'' \geq G'$

$G'' \leq G'$

$5\text{kg/mol} \times 1.6$

$20\text{kg/mol} \times 1$

$60\text{kg/mol} \times 0.5$
Self-assembly of Stickers

Polymer Matrix

Gel / Fluid Rouse / Entanglements T_g

Comb-shaped Aggregates
≈ Comb-shaped Polymers

$G'' \geq G'$
$G'' \leq G'$

$\omega \neq f(M_w)$

≈ 0.5

$G' \times 1$
$G'' \times 0.5$

$G' \times 1.6$
$G'' \times 1$

$5\text{ kg/mol} \times 1.6$

$20\text{ kg/mol} \times 1$

$60\text{ kg/mol} \times 0.5$
Strong Stickers vs Weak Stickers ?

Molecular weight dependency ?
Strong Stickers vs Weak Stickers?

Molecular weight dependency?

$\eta^* (1 \text{rad/s}, T=25^\circ \text{C})$

Critical Molecular weight (M_c)?

Stickers’ Regime

$M_n \leq M_c$

Entanglements’ Regime

$M_n \geq M_c$

Jullian, N.; Leonardi, F.; Grassl, B.; Peyrelasse, J.; Derail, C.

Strong Stickers vs Weak Stickers ?

Molecular weight dependency ?

[Graph showing viscosity (η*) against molecular weight (M_n) with data points for Strong, Weak, and PnBA stickers.]

Critical Molecular weight (M_c) ?

Stickers’ Regime
\(M_n \leq M_c \)

Entanglements’ Regime
\(M_n \geq M_c \)

\(M_c \approx 40 \text{kg/mol} \)
\(M_c \approx 20 \text{kg/mol} \)

Strength ↗, M_c ↗

Strong Stickers vs Weak Stickers?

Stability of the nanostructure (below M_c)?

$M_n = 5$ kg/mol

Strong Sticker

$T_{ref} = 7^\circ C$

$G' G'' PnBA3U5$
Strong Stickers vs Weak Stickers?

Stability of the nanostructure (below M_c)?

\[T_{ref}=7^\circ C \]

\[M_n = 5\text{kg/mol} \]

Strong Sticker

- $M_n = 5\text{kg/mol}$

Weak Sticker

- G'
- G''
Strong Stickers vs Weak Stickers?

Stability of the nanostructure (below M_c)?

$T_{\text{ref}} = 7^\circ C$

$M_n = 5\text{kg/mol}$

Strong Sticker

Weak Sticker

$T \leq T_{ODT}$

$T \geq T_{ODT}$
Strong Stickers vs Weak Stickers?

Stability of the nanostructure (below M_c)?

$T \leq T_{ODT} \rightarrow$ Frozen Structure over a long distance range \rightarrow Gel plateau

$T \geq T_{ODT} \rightarrow$ Scission / Association of Stickers \rightarrow Viscoelastic Fluids

$M_n = 5\text{kg/mol}$

Strong Sticker

Weak Sticker

G' $\triangleleft G''$
Conclusion on linear rheology of center-functionalized Polymers

G'

G''

Gel / Fluid

Entanglement / Rouse

Monomer Friction

ω
Conclusion on linear rheology of center-functionalized Polymers

Fine Control of the viscoelasticity via the chemical structure

Density and Strength of Stickers

T_{ODT} and M_c
Thank you for all People in Project ANR SUPRADHESION

Guylaine Ducouret
Costantino Creton

Cécile Fonteneau
Sandrine Pensec, Laurent Bouteiller

Cyril Véchambre
Jean-Marc Chenal, Laurent Chazeau
Thank you for your attention!