Boosting functionality of synthetic DNA circuits with tailored deactivation

Abstract : Molecular programming takes advantage of synthetic nucleic acid biochemistry to assemble networks of reactions, in vitro, with the double goal of better understanding cellular regulation and providing information-processing capabilities to man-made chemical systems. The function of molecular circuits is deeply related to their topological structure, but dynamical features (rate laws) also play a critical role. Here we introduce a mechanism to tune the nonlinearities associated with individual nodes of a synthetic network. This mechanism is based on programming deactivation laws using dedicated saturable pathways. We demonstrate this approach through the conversion of a single-node homoeostatic network into a bistable and reversible switch. Furthermore, we prove its generality by adding new functions to the library of reported man-made molecular devices: a system with three addressable bits of memory, and the first DNA-encoded excitable circuit. Specific saturable deactivation pathways thus greatly enrich the functional capability of a given circuit topology.
Type de document :
Article dans une revue
Nature Communications, Nature Publishing Group, 2016, 7, 〈10.1038/ncomms13474〉
Liste complète des métadonnées

Littérature citée [60 références]  Voir  Masquer  Télécharger

https://hal-espci.archives-ouvertes.fr/hal-01419361
Contributeur : Yannick Rondelez <>
Soumis le : lundi 19 décembre 2016 - 12:27:47
Dernière modification le : jeudi 11 janvier 2018 - 06:19:47

Identifiants

Collections

Citation

Kevin Montagne, Guillaume Gines, Teruo Fujii, Yannick Rondelez. Boosting functionality of synthetic DNA circuits with tailored deactivation. Nature Communications, Nature Publishing Group, 2016, 7, 〈10.1038/ncomms13474〉. 〈hal-01419361〉

Partager

Métriques

Consultations de la notice

117

Téléchargements de fichiers

52