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Abstract:  

Retinal vessels are directly accessible to clinical observation. This has numerous potential 

interests for medical investigations. Using the Retinal Vessel Analyzer, a dedicated eye 

fundus camera enabling dynamic, video-rate recording of micrometric changes of the 

diameter of retinal vessels, we developed a semi-automated computer tool that extracts the 

heart beat rate and pulse amplitude values from the records. The extracted data enabled us to 

show that there is a decreasing relationship between heart beat rate and pulse amplitude of 

arteries and veins. Such an approach will facilitate the modeling of hemodynamic interactions 

in small vessels.  
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1 Introduction 

The retinal vascular network is the only microcirculatory network that can be thoroughly 

observed in a noninvasive fashion. In most subjects, spontaneous pulsation of retinal arteries 

and/or veins can be detected on fundus examination. These pulsations result from the cyclic 

nature of cardiac output which propagates a pulse wave throughout the vascular tree at each 

systole. Passive vessel pulse associates longitudinal pulse (i.e. variation in length and/or 

tortuosity, (1)) and transversal pulse (i.e. variations in diameter). In retinal vessels, it is likely 

that the systolodiastolic variations of vessel diameter, termed here pulse amplitude (PA), 

result from the net effect of the interaction of variations of transmural pressure (which is 

proportional to the difference between intraluminal and intravitreal pressure) and retinal 

vessels compliance. Hence, it can be hypothesized that measuring the PA is likely to provide 

potential cues about several parameters related to ocular or general circulation, in particular 

regarding vessel compliance and intraluminal pressure. For instance, arteriolosclerosis 

increases the stiffness of arterioles; the latter should shift to the right the pressure-diameter 

relationship and the question remains opened, whether the macrocirculation compensates or 

not such changes.. Also, it is conceivable that luminal pressure modulates the PA. This may 

explain why venous pulse is not detectable in most patients with increased intracranial 
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pressure (2). Yet, the quantitative relationship between the PA and hemodynamic factors 

remains to be investigated. 

Initial studies of retinal vessel pulse used fundus photographs synchronized with the 

electrocardiogram and manual determination of vessel diameter (3). Recently, an automated, 

on-line approach of the PA of retinal vessel was made possible through computerized analysis 

of videorecordings of the fundus (4). The Retinal Vessel Analyzer® (RVA; Imedos, Jena, 

Germany) indeed records the temporal evolution of the vascular segment diameter. In order to 

perform a quantitative study of the PA, we have developed a computer tool that extracts the 

PA and heart beat rate (HBR) sequences from the RVA signal.  

Several studies used the RVA signal to investigate the vessel stiffness and the HBR. In (5), 

the authors suggest stimuli to apply to the patient eyes during the measurements, like flicker 

stimulation or systemic hyperoxia, with the goal to analyze their influence on the resulting 

signals. Another approach is to assess the pulse delay between vein and artery signals in order 

to estimate the retinal pulse wave velocity, as a measure of the vessel rigidity. Using this 

approach, it has been possible to correlate the vessel rigidity with glaucoma damage (6), 

vasospastic propensity (7) or blood pressure (8). The pulse delay assessment implies a Fourier 

signal decomposition whose first peak corresponds to the HBR. Furthermore, in (8), the 

authors considered the mean and scattering of the PA of each vessel and tested their 

correlations with other parameters. But to our knowledge, the HBR and PA have only been 

considered as two aggregate values for a whole signal. Here, our approach results in assessing 

their temporal evolution, allowing  to investigate whether their temporal variations are 

correlated or not. 

Section 2 is a presentation of the computer tool and of its algorithms, while section 3 is a 

description of some experimental results we obtained from a PA/HBR relationship 

investigation. 

2 Methods 

2.1 Subjects 

This study followed the principles of the Declaration of Helsinki and was approved by an 

Ethics Committee. Sixteen healthy subjects older than 18 years with at least 20/20 vision and 

a normal fundus were considered for the study. Each of them received full oral and written 

information and gave written consent prior to inclusion. Before RVA examination, 

participants were instructed to restrain from coffee, cigarette and alcohol consumption, as 
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well as from physical exercise for 12 hours. Then, routine ophthalmological examination was 

performed including a medical history, best-corrected visual acuity testing with manifest 

refraction, intraocular pressure (IOP) measure by applanation tonometry, slit lamp 

biomicroscopy and fundoscopy. Arteriovenous (AV) ratio was calculated using the built-in 

software of the RVA. For pupil dilation, topical tropicamide was applied on the examined 

eye. 

 

2.2 Signal acquisition 

Details on the RVA technology have been published earlier, by other authors ( (4), (5)). 

Schematically, it consists in the association of a classical fundus camera (FF450, Carl Zeiss 

GmbH, Germany) which records the fundus image through a videorecorder, and a built-in 

software which performs the image analysis. The illumination light of the fundus camera is 

reflected by the different layers of the retina and by the retinal vessels before reaching the 

camera (charge-coupled device). The basic principle relies on the specific optical properties of 

the hemoglobin within the retinal vessels, which absorbs light at a maximum wavelength of 

400-620 nm whereas the surrounding tissues mostly reflect it. Thus, when a green filter is 

inserted between the white light source and the retina, the images are very contrasted, with a 

high brightness difference between the hemoglobin and the surrounding tissues (figure 1).   

The build-in software of the RVA makes use of this contrast to locate the vascular vessels on 

the images. It allows the user to select vascular segments and then tracks these segments in 

the successive images (25 images per second) and assesses their diameters. The successive 

diameter measurements are then exported as Excel datasheets (Microsoft Corporation, 

Redmond, WA) for off-line analysis. 

Since the image scale of each eye is unknown, the diameter values are expressed in relative 

units (RU). If the examined eye has the dimensions of the normal Gullstrand eye, this unit 

corresponds to the micrometer. 

In our study, the selected vascular segments were an arterial and a venous segment, 

approximately 500 µm long and 100 µm large (figure 1), whose diameter temporal evolution 

has been recorded during one or two minutes for each subject. We focused on the spontaneous 

changes of HBR and PA and did not use external stimulation such as flicker light that has 

been suggested by other authors (5) and is made available by the RVA. 

 



  5 

2.3 Signal decomposition 

An individual record contains two signals, corresponding to the two selected vessel segments. 

Figure 2 shows an example of observed record: both artery and vein signals clearly exhibit 

cardiac pulsations. The tool that we present analyses each record and divides it into a 

succession of pulsations, for which a duration (and hence a corresponding heart beat rate 

HBR) and a pulse amplitude PA for both vessels are estimated (figure 3). Thus, each 

individual record results in a sequence of cycle HBR, arterial PA and venous PA. 

A signal can be represented as a sequence of values (ti, yi) for the time and the corresponding 

vessel diameter. It has some missing and spurious data. The process leading to the signal 

division runs through three steps: first, the spurious data are identified and removed; second, 

the signal is decomposed into multi-resolution signals; and third, this decomposition is used to 

delimit the cardiac cycles.  

 

2.4 Artifact identification 

The first task is to detect and remove artifacts from the signal. Indeed, the RVA recorder 

generates spurious data, for example during loss of fixation by the patient. Furthermore, these 

artifacts are sometime grouped: their occurrence then results in a succession of outliers. 

The algorithm we developed to detect artifacts is based on a basic idea: around each signal 

data (ti, yi), we build a local model of the signal and estimate the local residual standard 

deviation σ, which characterizes the measurement noise. Then we compare the model residual 

at point ti to σ:  if it is significantly greater than σ, we decide that the observation (ti, yi) is 

spurious (figure 4). 

More precisely, for a data point (ti, yi), we build a local model to fit the training examples 

{(tj, yj) , j  J} of the set  

 RttrjJ ij  / , 

where r and R are predefined parameters. The constraint that |tj-ti|R ensures that the resulting 

model is local, while the constraint that |tj-ti|r ensures that the i'th point and its neighbors are 

unused in the model construction. Indeed, if the i'th point is an artifact, the neighbors are 

likely to be also artifacts and should therefore be excluded as well. The local model is a 

function f(t, θ) whose parameter vector θ is set to the least squares value θls, the one the 

minimizes the total squared error 
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In our program, the functional form is a two-phase linear function: 

   

12

12

2211

22

11

with

i f

i f
),(

bb

aa
t

baba

tttba

tttba
tf

c

t

c

c













θ

θ

 (2) 

This model is piecewise linear in its parameters and the parameter vector θls is obtained from 

the ordinary least squares formula: we call y the column vector of the training example 

outputs y = (yj, jJ); we show in the appendix how to build an experience matrix x from the 

training inputs (tj, jJ) such that the model output to the training examples is xθ. Then the 

total squared error L(θ) is the quadratic norm ||y-xθ||
2
 of the residual vector and its minimum 

is found by setting its gradient with respect to θ to zero. When the matrix x is full rank, it 

results in: 

    yxxxθ t1t

ls


  (3) 

We can now define a confidence interval for Yi in order to decide whether the example (ti, yi) 

follows the same distribution as the examples {(tj, yj) , j  J} (see (9) and the illustration on 

figure 4). In order to distinguish this interval for a random variable Yi, from the classical 

confidence interval for a non random value such as a mathematical  expectation or a standard 

deviation, we call it a “prediction interval” (10). 

If the model contains the “real” regression function and if the noise of Y is Gaussian with a 

uniform variance σ², that is if there exists a parameter value θ0 and a normal random variable 

W with zero mean and unit variance such that 
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then the model value f(ti,θls) is a normal random variable whose expectation and variance are 
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Since Yi does not belong to the training set, it is independent from f(ti,θls) and their difference 

Yi - f(ti, θls) is normally distributed with a mean equal to the difference of the means and a 

variance equal to the sum of the variances. Therefore, the following random variable is 

normally distributed with zero mean and unit variance: 
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Furthermore, the estimator S² of the variance σ² is χ² distributed: 
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where n is the number of training examples (the size of J) and p the number of independent 

parameters of the model. Considering the independence of these two random variables, their 

ratio defines a Student variable with n-p degrees of freedom: 
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We can hence compute a 1-α prediction interval: 
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where tinvn-p is the inverse of the Student(n-p) cumulative distribution function. If the value yi 

of Yi lies in the interval, then the hypothesis that Yi has the distribution (4) is accepted. 

Conversely, if yi lies outside the prediction interval, the hypothesis is rejected with a risk of 

error α and the point (ti, yi) is considered as a spurious point.  

The local model and the artifact identification are applied iteratively: first, all the signal points 

are tested and, for each individual test, all neighboring points are used to build the local model 

and the prediction interval. Then the spurious points are removed, and the algorithm is 

reiterated: only the remaining points are tested and, for each individual test, only the 

remaining points around are used as training examples to build the local model and the 

prediction interval. The points that are identified as spurious are removed and the process is 

reiterated until there is no residual spurious point. 

All the points identified as artifacts are removed from the signal: the next steps of the analysis 

use signals without any of these points. 

 

2.5 Multiresolution signal decomposition 

The next step is to decompose the signals at the appropriate time scale. Indeed, the signal 

variations have other causes than heart beats, for example vasomotion or noise. In order to 

extract the cardiac pulsations, we use the signal dynamic properties and remove its variations 

that are too slow or too fast as compared to the HBR order of magnitude. We do this by using 

a multiresolution decomposition inspired by (11). The two timescales T1 and T2 are predefined 
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parameters such that T1>>T2, (3 and 0.1 sec. as default values) and the signal is decomposed 

into these two scales and a residual according to:  
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The decomposed form of the signal is (see figure 5) 

 

The first scale decomposition term d1(t) contains slow variations that can be seen at a time 

scale T1 (3 sec.) or more; those are long term movements that are not caused by cardiac beat. 

The second scale resolution signal d2(t) contains the variations which, being faster, cannot be 

seen at the time scale T1, but are still visible at the scale T2 (0.1 sec.). This is the case of the 

heart beat signal. At least, the residual r2(t) is a short term movement that cannot be seen 

neither at scale T1 nor T2. It is mainly made of noise. This decomposition enables to isolate 

the second decomposition scale d2(t), which is the part of the signal we use to delimit the 

cycles. 

 

2.6 Cardiac cycle delimitation and validation 

After the artifacts have been removed and the signal decomposed at the appropriate 

timescales, the cardiac cycles can be delimited and validated, on both vein and artery signals 

(figure 3). As can be seen on figures 2 and 3, the cycles are much more noticeable on the 

venous than on the arterial signal. For this reason, we first set the periods of the first signal, to 

which we synchronize the second signal division, with a flexible time advance. For the same 

reason, the HBR of the period is estimated with the venous period duration, while the arterial 

division is only used to estimate the arterial PA. 

The vein signal period delimitation is performed with the second scale decomposition term 

d2(t) (formula (12)). Two new parameters are defined, Tmin and Tmax, which are the minimum 

)()()()( 221 trtdtdty 

y1(t) 

y2(t) 

r1(t) 

r2(t) 

(11) 
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and maximum values for a cycle duration. To start with, the period ending points are set as the 

local minima of d2(t): they are the time points tlim such that 

  )()(,/ lim22minlim tdtdTttt   (12) 

and the periods are the intervals between two such successive points. Then the algorithm tries 

to concatenate these periods. Each one is grouped with the next one, and a “shape validation 

procedure” evaluates whether the enlarged period is likely to correspond to a cardiac cycle or 

not. If yes, the enlarged period is accepted and the intermediate delimitation point is removed.  

The arterial period synchronization implies another parameter, dtmax (0.32 sec. as default 

value), which is the maximal time delay of one signal on the other. For every vein period with 

ending point tlim, we define a corresponding arterial period whose ending point is the 

minimum of the arterial second scale decomposition term d2(t) on the interval [tlim- dtmax, tlim].  

The last step is the period validation. Each period is evaluated: first, its duration is compared 

with the parameters Tmin and Tmax; second, the “shape validation procedure” is run. The 

periods that are not validated as cardiac cycles remain in the signal division, but are not taken 

into account for further statistics: their invalidation is generally the consequence of a locally 

too noisy or too flat signal, and their HBR and PA assessment would not be trustworthy. 

The basic idea of the “shape validation procedure” is that a signal interval, when it 

corresponds to a cardiac cycle, consists more or less of an increasing phase followed by a 

decreasing one, with limited oscillations around this skeleton (figure 6). To implement it, the 

procedure models the second scale decomposition d2(t) as a two-phase linear regression (the 

model construction is described in the appendix), checks that the model has the expected 

variation signs and that its error is small enough as compared to the d2 standard deviation. The 

procedure also checks that the second scale residual r2(t) has small variations as compared to 

d2(t). 

Let P=[tbegin, tend] denote the evaluated period, f(t,θls) the two-phase linear model of the signal 

in the period and tc the model changeover point. Let  minP(y(t)), maxP(y(t)), meanP(y(t)), and 

stdP(y(t)) denote the extreme values, mean and standard deviation of signal y(tj) on the period 

P. The procedure validates the period if the following conditions are all fulfilled: 
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Condition C1 controls the data noise as compared to the pulse amplitude. Condition C2 

controls how close the two-phase linear model is to the second scale decomposition term d2(t) 

and condition C3 checks that the changeover point tc corresponds to a maximum.  The bounds 

noise_max and error_max are parameters of the algorithm whose default values are 35% and 

50%.One should notice that this procedure is invariant to homothetic transformation of the 

signal according to the time t and/or to the vessel width y. 

Once the periods are set and validated, their HBR and PA can be estimated: the HBR of 

period P is inverse to the venous period duration tend-tbegin, and the PA of each vessel is the 

amplitude maxP(y(t))-minP(y(t)) of the second scale decomposition term during the period. 

 

2.7 User defined modification 

The algorithm presented above is automatic. Once its parameters are set, it directly gives a 

structure to the RVA signal: it removes the spurious data, decomposes the remaining signal at 

the appropriate time scales, divides it into periods and selects the ones which are likely to 

correspond to cardiac cycles. The algorithm parameters are recalled in table 1. 

However, the user may disagree with some of the algorithm results and the program allows 

him to modify them manually. These corrections comprise changing the artifact status of any 

point, adding or deleting a period delimitation and forcing a cycle validation or invalidation. 

In particular, the artifact detection inevitably leads to false positives: if the test level is α, a 

proportion α of the non spurious points will be wrongly identified as spurious. Furthermore, 

the proportion of false negative is unknown but is non-zero and some spurious points may 

remain undetected. The manually modified result can then be saved into a file and reloaded in 

further sessions using the signal. 
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To limit the subjectivity induced by allowing to modify the algorithm result or not, we 

restricted ourselves to some artifacts undetected by the algorithm and to some period 

invalidation. The experimental results presented in the next section were obtained with only a 

few user defined modifications, and those respected the following rules: 

 We felt free to change the artifact status of any point. But once the artifact list had been 

set, we kept it constant, whatever the results of the signal decomposition, 

 The periods delimitations remained unmodified: no delimitation has been added, deleted 

nor shifted, 

 However, we permitted ourselves a few periods invalidation: when there was a significant 

change of duration of two successive cycles, both have been rejected if there was 

uncertainty about their delimitation.  

3 Experimental results 

The tool described above has been applied to the individual RVA records obtained for the 16 

subjects. The algorithm hence produced 16 series of validated pairs (HBR, PA) for both the 

arteries and the veins. The signal properties are not homogenous: the cyclic variations due to 

the heart beats are more easily identified for the veins than for the arteries, resulting in more 

validated periods (table 2).  

We used these divisions to investigate whether the PAs and HBR are related or not. Each of 

the 16 records has been studied statistically for both vessels. 

 

3.1 Individual modeling 

To start with, we built individual models: for each record we computed: 

‒ The linear correlations between the PAs and HBR,  

‒ A p-value testing the absence of correlation between the variables (Pearson’s test) against 

the alternative hypothesis of their negative correlation, 

‒ a linear regression of the PAs on HBR and an estimation of its standard error. 

The results are displayed on table 3 and the regressions are plotted on figure 7. For most 

subjects there was a negative correlation between PA and HBR for both arteries and veins, yet 

statistical significance (p≤0.05) was observed in only 1 subject. 

A point worth mentioning from figure 7 is the disparity of the HBR and PA domains, which 

differ significantly from an individual to another. This observation suggests that PA is not a 

simple function of HBR, but also depends on individual specificities. The model standard 
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errors are shown on figure 8. When computed on all the records together, they equal 1.01 RU 

for the arteries and 1.14 RU for the veins. Each individual regression has 2 parameters, hence 

the overall modeling (one model per record) has 32 independent parameters for each vessel 

type. 

 

3.2 Global modeling 

In building the individual models, a significant negative correlation between PA and HBR 

appeared only for one individual. A reason may have been the small number of validated 

periods per individual, as compared to the correlation order of magnitude. To overcome this, 

we have concatenated all the records and built two large datasets, one for the arteries and one 

for the veins. In both cases, we computed the linear correlations, tested the correlation, built 

2-degree regressions of PA on HBR and estimated their standard errors. Table 4 shows the 

results, figure 7 displays the two data sets and the corresponding second degree regressions 

and figure 8 shows the model standard errors. 

These results show a significant negative correlation between the HBR and PA. However, the 

polynomial regressions are not monotonic and their standard errors are much larger than those 

obtained with the individual models. This may be consistent with the number of independent 

parameters, which is now of only 3 instead of 32 for each vessel type, but this model 

reduction does not take the individual specificities into account. For example, it can be seen 

from figure 7 (middle right) that some vein data points have a low HBR and a high PA. But it 

can also be seen, from figure 7 (top right), that they may correspond to records whose PA is 

globally very high. It is therefore difficult to know whether these high observed values have 

to be attributed to low HBR values or to individual effect.  

 

3.3 Linear mixed effect modeling 

In order to include both the individual and the HBR effects in the modeling, we have built, for 

each vessel type, a linear mixed effect (LME) model (12). A LME model has a random effect, 

here the individual record, and a fixed effect, here the HBR. In our case, for a data point i of 

the record r, the model output is 

  irirrir HBRbaPA ,,,   (14) 

The coefficient ar is specific to the record r, it is the individual effect which is considered as 

random; the fixed effect b is common to all the records and the residuals εr,i are independent 

identically distributed random variables.  
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Fitting the models to the data, by using the “restricted maximum likelihood” method (12), 

resulted in the parameters of table 5. The model plots are shown on figure 7 and their standard 

errors on figure 8. 

The standard model errors are 1.03 RU for the arteries and 1.14 RU for the veins. They are 

significantly lower than the global model standard errors (1.72 RU and 2.53 RU), and nearly 

the same than the individual model standard errors (1.02 RU and 1.14 RU). The number of 

independent parameters lies between the two former modeling sizes: there is one common 

parameter b and a specific ar for each record, that is 17 parameters for each vessel type. They 

have to be compared with 32 parameters in the case of individual modeling, and with 3 

parameters in the global modeling. The LME modeling has less parameters than the 

individual modeling with the same performance, while the global modeling has less 

parameters than both LME and individual, but this gain is paid by an important loss of 

performance. The best modeling is clearly the LME. It is rich enough to take the individual 

disparities into account, and still allows a HBR term that is common to all. 

Both for the arteries and for the veins, the multiplicative coefficient b of the HBR term is 

negative. Furthermore, we evaluated its significance by testing the null hypothesis b=0 (i.e. 

zero correlation) against the alternative hypothesis b≠0. As shown in the last row of table 5, 

the p-value is 0.0006 for the arteries and 0.0002 for the veins: in both vessel types, the null 

hypothesis is clearly rejected and the coefficient b is significantly negative. 

4 Discussion 

We found a negative correlation between the heart beat rate and the pulse amplitude, in 

particular the venous one, i.e. the lower the HBR, the higher the pulse amplitude. The most 

important component of the variability of the HBR is the diastole, that it, the time during 

which the heart is at reast between two constrictions (the systoles). Hence, a lower heart beat 

rate means a longer diastole. During diastole, the venous diameter progressively decreases to 

reach a nadir immediately after the beginning of the systole. It is assumed indeed that the 

venous flow is continuous, and may even lead to a complete emptiness of the vein. The latter 

can indeed be observed around the optic disc. The depth of the nadir is therefore linked to the 

length of the diastole. Since the venous diameter during systole does not vary significantly, 

any change in length will modify the depth of the venous nadir and hence the pulse amplitude 

at the next systole. The fact that the vein may become completely empty during diastole 

indicates that venous flow does not depend only on the "pushing effect" of arteriolar flow, but 

that intraocular pressure probably also contributes to venous outflow. Future works on the 
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relationship between PA and HBR could lead to algorithms that could provide an estimate of 

intraluminal venous pressure, an important parameter in cardiology. For instance, it is 

expected that an increased venous pressure would weaken the relationship between PA and 

HBR. This will require to improve the quality of data and in particular adress the issue of the 

frequent artifacts. 

5 Conclusion 

We have proposed a method for semi-automated analysis of the variations of retinal vessel 

diameters which decomposes the RVA signal into a succession of pulsations corresponding to 

cardiac cycles. It allows to display the temporal changes of the pulse amplitude and heart beat 

rate. Using this tool, we have shown that, for healthy patients, there is a significant negative 

correlation between these two variables. However, significant individual disparities suggest 

that the pulse amplitude also depends on other hemodynamic factors which remain to be 

identified. The construction of a model linking hemodynamic factors, intraocular pressure and 

vessel diameters, may allow inferring hemodynamic values such as intraluminal pressure 

and/or vessel compliance. This emphasizes the potential medical importance of our approach. 
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Appendix: construction of a two-phase linear regression model 

First of all we recall the least squares formula. Let y denote a N×1 vector, x a N×p matrix and 

θ a p×1 unknown vector. If p<N and if the rank of x is p, then the minimization in θ of the 

quadratic function 
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is obtained for the least squares value θls: 
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This solution is found by setting the gradient of (A1) with respect to θ to 0. 

 

Now, let (tj, yj), j=1,…,N be a set of training points such that 

  Ntttt  ...321  (A3) 

and let f(t,θ) be the two-phase linear model  

   

12

12

2211

22

11

with

i f

i f
),(

bb

aa
t

baba

tttba

tttba
tf

c

t

c

c













θ

θ

 (A4) 

We look for the least squares parameter value θls which minimizes the quadratic loss function 

L(θ): 
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In this appendix, we show how to compute the least square parameter value θls. The basic idea 

is that, since the model f(t,θ) is piecewise linear in its parameter θ, the loss function L(θ) is 

piecewise quadratic with the form (A1). In particular, there is a parameter dimension p and a 

matrix x of size N×p such that θls is the minimum of the quadratic function (A1) and can be 

expressed by (A2).  

The changeover point tc is either in the set S
(0)

 = (-∞, tt]  [tN, +∞), or in a set S
(k)

 = [tk, tk+1]. 

We solve (A5) analytically on each set S
(k)

 and denote p
(k)

, 
)(k

lsθ , x
(k)

 and L
(k)

 the 

corresponding parameter dimension, least square parameter, experience matrix and loss 

function value. 
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i. Solution on S
(0)

 

If tc≤t1 or tc≥tN, then the model is linear on [t1, tN] (single-phase model): 
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The loss function is 
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where y is the vector of the (yj) and x
(0)

 is: 
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This loss function has the form (A1) and its minimum is hence given by (A2): 

    yxxxθ
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The optimal loss value L
(0)

 is deduced from (A7) with θ = 
)0(

lsθ  and the number p
(0)

 of 

independent parameters is 2. 

 

ii. Solution on S
(k)

 with k ≠ 0 

If tk ≤ tc ≤ tk+1 , then the model is 
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The following constrained optimization has to be solved: 
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First, the minimization is solved without constraint, and we check whether the solution 

satisfies the constraints or not. If yes, it is the solution of (A11). If not, the optimization is 

performed after saturation of one constraint and the other (both cannot be saturated 

simultaneously), and the solution with the lowest loss value is selected. 

 Unconstrained problem 

The loss function takes the form (A1) with the experience matrix x
(k)
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Its solution is therefore obtained by applying (A2): 

    yxxxθ
(k)t1(k)(k)t(k)

ls


  (A13) 

If it fulfills the constraints, it is the solution of (A11). The number p
(k)

 of independant 

parameters is 4, the experience matrix is given by (A12) and the loss value by (A1). 

 Constraint saturation 

If the parameter value given by (A13) does not fulfill the constraints, the latter have to be 

saturated. Both cases tc = tk and tc = tk+1 are considered, and the solution with the lowest error 

is kept. Since both are solved in the same way, we now explicit only the first case. The 

constraint implies 

  )( 1212 bbtaa k   (A14) 

By injecting (A14) in (A10), we get 
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The loss function then takes the form (A1) with the experience matrix x
(k)
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and its solution is given by (A2): 

    yxxxθ
(k)t1(k)(k)t(k)

ls


  (A17) 

This parameter vector, completed by the a2 value from (A14), gives the solution of (A11) with 

the first constraint saturated. The number p
(k)

 of independant parameters is 3, the loss value 

L
(k)

 is deduced from (A1) with the experience of (A16). The same procedure is used to solve 

(A11) with the second constraint saturated, and the best of the two is the solution of (A11). 

Note that the solution of (A11) on S
(k)

 under the second constraint saturation may be used to 

solve (A11) on S
(k+1)

 under the first constraint saturation.  

 

iii. Global solution 

The global solution of (A5) is merely obtained by considering all the solutions 
)(k

lsθ  on the 

subsets S
(k)

 (k=0,…,N-1), and by selecting the one with the lowest loss value L
(k)

. The 

parameter dimension p and experience matrix x are the corresponding p
(k)

 and x
(k)

. 
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 Parameter Description Default value 

Spurious point 

detection 

r and R 
Temporal radius for training 

examples selection 
0.10 and 0.40 sec. 

α Statistical test level 2% 

Multiresolution 

decomposition 
T1 and T2 Long and short term timescale 3.0 and 0.1 sec. 

Period delimitation 

Tmin and Tmax Extrema of cycle duration 

0.5 and 1.71 sec. 

(correspond to 

HBR extrema of 35 

and 120 bpm) 

dtmax 

Maximum time delay between 

arterie and vein 
0.32 sec. 

Period shape 

validation 

noise_max Maximum noise/PA ratio 35% 

error_max 
Maximum model error/std 

ratio 
50% 

 

Table 1: synthetic view of the algorithm parameters.  
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Record 

Artery Vein 

Periods 
Validated 

periods 
Mean HBR SD HBR Periods 

Validated 

periods 
Mean HBR std HBR 

1   116   99   72.5   7.0   102   101   72.2   7.5  

2   118   25   77.5   13.5   124   62   72.7   12.6  

3   91   31   80.2   12.6   90   43   78.0   14.2  

4   124   97   65.0   6.6   115   98   65.8   6.8  

5   112   29   60.6   6.7   108   104   60.3   5.7  

6   133   26   84.8   12.5   134   53   84.9   12.0  

7   42   5   54.4   2.3   42   42   53.6   3.8  

8   63   19   87.2   11.5   60   36   87.7   11.0  

9   55   28   72.7   8.6   55   44   73.6   10.0  

10   49   13   71.0   9.8   53   51   69.4   6.8  

11   44   18   62.7   5.4   43   43   62.2   5.9  

12   68   5   90.6   4.7   66   60   90.6   7.3  

13   78   35   86.1   5.7   75   72   86.0   5.8  

14   51   24   62.4   4.8   47   47   62.8   4.7  

15   108   14   102.1   10.9   106   101   99.2   9.0  

16   36   14   56.3   13.5   40   30   55.1   11.0  

Table 2: synthetic view of the 16 records (Mean HBR and SD HBR in beats per minute). 
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Record 

Artery Vein 

Validated 

periods 

Corr 

HBR/PA 
p 

Model std 

error 

Validated 

periods 

Corr 

HBR/PA 
p 

Model std 

error 

1 99 -0.35 <0.01 0.81 101 -0.23 0.02 0.78 

2 25 -0.32 0.12 1.09 62 -0.12 0.37 1.04 

3 31 -0.02 0.92 0.63 43 -0.09 0.57 1.11 

4 97 -0.07 0.47 0.64 98 -0.04 0.68 0.69 

5 29 -0.35 0.06 0.83 104 -0.00 0.99 0.79 

6 26 0.15 0.45 0.79 53 -0.05 0.72 1.24 

7 5 0.20 0.75 0.50 42 -0.15 0.35 0.87 

8 19 0.04 0.88 1.78 36 -0.17 0.33 1.41 

9 28 -0.07 0.71 1.44 44 -0.08 0.59 1.12 

10 13 -0.18 0.55 1.45 51 -0.11 0.46 1.90 

11 18 -0.41 0.09 0.64 43 -0.24 0.13 1.00 

12 5 -0.21 0.74 0.34 60 -0.12 0.37 1.36 

13 35 -0.28 0.10 0.60 72 -0.15 0.21 0.57 

14 24 -0.01 0.96 1.21 47 -0.23 0.12 1.14 

15 14 0.09 0.75 1.92 101 -0.14 0.15 1.15 

16 14 -0.47 0.09 2.29 30 -0.17 0.36 2.64 

Table 3: correlations between HBR and PA, p-values of the independence test and standard 

error (in RU) of the individual linear regressions. 
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 Arteries Veins 

Regression formula 
PA = 4.26 - 0.03 (HBR-72.76) + 

0.0013 (HBR-72.76)
2
 

PA = 4.85 - 0.07 (HBR-74.45) + 

0.0023 (HBR-74.45)
2 

Regression standard 

error 
1.72 2.53 

Correlation -0.09 -0.31 

p 0.04 <0.0001 

 

Table 4: results for the global modeling (HBR in beats per minute, PA and regression error in 

RU). 
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Record 

Arteries Veins 

Model formula 

(PA:RU, HBR: bpm) 

Standard 

error (RU) 

Model formula 

(PA:RU, HBR: bpm) 

Standard 

error (RU) 

1 PA = 6.32 -0.019 HBR 0.82 PA = 5.12 -0.016 HBR 0.79 

2 PA = 5.99 -0.019 HBR 1.09 PA = 4.57 -0.016 HBR 1.05 

3 PA = 4.75 -0.019 HBR 0.67 PA = 5.32 -0.016 HBR 1.12 

4 PA = 4.58 -0.019 HBR 0.64 PA = 4.05 -0.016 HBR 0.69 

5 PA = 5.00 -0.019 HBR 0.85 PA = 5.68 -0.016 HBR 0.80 

6 PA = 4.68 -0.019 HBR 0.87 PA = 5.91 -0.016 HBR 1.25 

7 PA = 3.80 -0.019 HBR 0.55 PA = 11.62 -0.016 HBR 0.87 

8 PA = 6.88 -0.019 HBR 1.80 PA = 6.61 -0.016 HBR 1.41 

9 PA = 7.67 -0.019 HBR 1.44 PA = 6.93 -0.016 HBR 1.12 

10 PA = 8.17 -0.019 HBR 1.45 PA = 12.51 -0.016 HBR 1.90 

11 PA = 4.83 -0.019 HBR 0.66 PA = 7.86 -0.016 HBR 1.01 

12 PA = 3.70 -0.019 HBR 0.39 PA = 7.07 -0.016 HBR 1.36 

13 PA = 4.74 -0.019 HBR 0.60 PA = 4.28 -0.016 HBR 0.57 

14 PA = 8.25 -0.019 HBR 1.21 PA = 9.82 -0.016 HBR 1.16 

15 PA = 8.99 -0.019 HBR 1.96 PA = 6.46 -0.016 HBR 1.15 

16 PA = 8.83 -0.019 HBR 2.49 PA = 11.21 -0.016 HBR 2.65 

All PA = ar -0.019 HBR 1.03 PA = ar -0.016 HBR 1.14 

p-

value(b=0) 
0.0006 0.0002 

 

Table 5: the LME models and their performances. For each vessel type, the additive 

coefficients are specific to each record and only the coefficient b of the HBR term is common 

to all records. The last row is the result of testing the hypothesis b=0. 
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Figures 

 

 

 

 

 

 

Figure 1: eye fundus image showing an example of two selected vascular segments whose 

diameters are measured by the RVA. 
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Figure 2: an example of RVA record, with a venous and an arterial signal. Spurious points 

(▲) are removed and a baseline (bold black line) is calculated. The heart beat pulsations 

appear clearly around the baseline. 
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Figure 3: the RVA signal is decomposed into a succession of periods. Some of them, like the 

central one, in the bold rectangle, are likely to be cardiac cycles; a duration is estimated on the 

vein signal, and two pulse amplitudes are then estimated, one for the artery and one for the 

vein. Other periods may be rejected, for one or both vessels, because of the lack of regularity 

of the signal (grey rectangles). This decomposition requires first to identify spurious (▲) and 

correct (×) data, second to compute a multi-resolution decomposition (plain lines) of the 

signal, and third to delimit and validate the cardiac cycles. 
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Figure 4: illustration of spurious points identification. The tested point is shown by the arrow 

(t=99.40 sec, y=163.19 RU). The data points whose distance to this point is between 0.1 and 

0.4 sec. are used as training examples to build a local model (a two-phase linear regression). 

From the dispersion of these training examples around the local model, the procedure 

estimates the local noise  and infers a 2% prediction interval for the tested point. Here, the 

tested point is outside the prediction interval and is hence identified as spurious. 
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Figure 5: the signal is decomposed into a long term resolution signal y1(t) (T1 = 3 sec, in bold 

line), a mid term resolution signal y2(t) (T2 = 0.1 sec, in thin line) and the original signal y(t) 

(in ×). 

 

 

 

Figure 6: illustration of the «shape validation procedure». The evaluated intervals are the left 

and central arterial periods of the figure 3. A two-phase linear regression model is built to 

approximate the second scale decomposition term d2(t). In the first example (left), the model 

error, as compared to the d2(t) standard deviation, is too important (ratio of 0.53>0.50) and the 

interval is not validated. The second interval (right), fulfilling all the conditions, is validated. 
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Figure 7: the individual linear regressions (top), global 2-degree regressions (middle) and 

linear mixed models (down) for the arteries (left) and the veins (right). The global models are 

shown with the data sets and a 0.95 prediction interval. 
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Figure 8: standard errors of the 3 modeling approaches for the arteries (left) and veins (right). 

The standard errors are displayed record by record and then for all records together. 

 


