Linear Regression Models and Neural Networks for the Fast Emulation of a Molecular Absorption Code

Abstract : The background scene generator MATISSE, whose main functionality is to generate natural background radiance images, makes use of the so-called Correlated K (CK) model. It necessitates either to load or to compute thousands of CK coefficients for each atmospheric profile. When the CK coefficients cannot be loaded, the computation time becomes prohibitive. The idea developed in this paper is to substitute fast approximate models to the exact CK generator: using the latter, a representative set of numerical examples is built and used to train linear or nonlinear regression models. The resulting models enable an accurate CK coefficient computation for all the profiles of an image in a reasonable time.
Type de document :
Article dans une revue
Applied optics, Optical Society of America, 2009, 48 (35), pp.6770-6780
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal-espci.archives-ouvertes.fr/hal-00805086
Contributeur : Isabelle Rivals <>
Soumis le : mercredi 27 mars 2013 - 08:00:42
Dernière modification le : mercredi 28 mars 2018 - 14:06:01
Document(s) archivé(s) le : vendredi 28 juin 2013 - 04:04:59

Fichier

77411F28-BDB9-137E-CA4F0579819...
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-00805086, version 1

Collections

Citation

Guillaume Euvrard, Isabelle Rivals, Thierry Huet, Sidonie Lefebvre, Pierre Simoneau. Linear Regression Models and Neural Networks for the Fast Emulation of a Molecular Absorption Code. Applied optics, Optical Society of America, 2009, 48 (35), pp.6770-6780. 〈hal-00805086〉

Partager

Métriques

Consultations de la notice

456

Téléchargements de fichiers

160