G. Golfier, Classification of human chromosome 21, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01197498

K. Amano, H. Sago, C. Uchikawa, T. Suzuki, S. Kotliarova et al., Dosage-dependent over-expression of genes in the trisomic region of Ts1Cje mouse model for Down syndrome, Human Molecular Genetics, vol.13, issue.13, pp.1333-1340, 2004.
DOI : 10.1093/hmg/ddh154

S. Antonarakis, R. Lyle, E. Dermitzakis, A. Reymond, and S. Deutsch, Chromosome 21 and down syndrome: from genomics to pathophysiology, Nature Reviews Genetics, vol.46, issue.10, pp.725-738, 2004.
DOI : 10.1002/dvdy.20079

L. Baxter, T. Moran, J. Richtsmeier, J. Troncoso, and R. Reeves, Discovery and genetic localization of Down syndrome cerebellar phenotypes using the Ts65Dn mouse, Human Molecular Genetics, vol.9, issue.2, pp.195-202, 2000.
DOI : 10.1093/hmg/9.2.195

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society, vol.57, issue.1, pp.289-300, 1995.

P. Landfield, Incipient Alzheimer's disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses, Proc Natl Acad Sci U S A, vol.101, issue.7, pp.2173-2178, 2004.

B. Bolstad, R. Irizarry, M. Astrand, and T. Speed, A comparison of normalization methods for high density oligonucleotide array data based on variance and bias, Bioinformatics, vol.19, issue.2, pp.185-193, 2003.
DOI : 10.1093/bioinformatics/19.2.185

N. Bontoux, L. Dauphinot, T. Vitalis, V. Studer, Y. Chen et al., Integrating whole transcriptome assays on a lab-on-a-chip for single cell gene profiling, Lab on a Chip, vol.3, issue.3, pp.443-450, 2008.
DOI : 10.1039/b716543a

W. Cleveland, Robust Locally Weighted Regression and Smoothing Scatterplots, Journal of the American Statistical Association, vol.39, issue.368, pp.829-836, 1979.
DOI : 10.1214/aos/1176343886

L. Dauphinot, R. Lyle, I. Rivals, M. Dang, R. Moldrich et al., The cerebellar transcriptome during postnatal development of the Ts1Cje mouse, a segmental trisomy model for Down syndrome, Human Molecular Genetics, vol.14, issue.3, pp.373-384, 2005.
DOI : 10.1093/hmg/ddi033

S. Dudoit, . Yy, M. Callow, and T. Speed, Statistical methods for identifying genes with differential expression in replicated cDNA microarray experiments, Statistical Sinica, vol.12, pp.111-139, 2002.

M. Dunlop, R. Cox, J. Levine, R. Murray, and M. Elowitz, Regulatory activity revealed by dynamic correlations in gene expression noise, Nature Genetics, vol.149, issue.12, pp.1493-1498, 2008.
DOI : 10.1038/msb4100050

R. Johnson and D. Wichern, Applied Multivariate Statistical Analysis., Biometrics, vol.54, issue.3, 2002.
DOI : 10.2307/2533879

L. Emilsson, P. Saetre, and E. Jazin, Alzheimer's disease: mRNA expression profiles of multiple patients show alterations of genes involved with calcium signaling, Neurobiology of Disease, vol.21, issue.3, pp.618-625, 2006.
DOI : 10.1016/j.nbd.2005.09.004

C. Epstein, The consequences of chromosome imbalance, 1990.

N. Hastie, Transcriptome analysis of human autosomal trisomy, Hum Mol Genet, vol.11, issue.26, pp.3249-3256, 2002.

S. Giannone, P. Strippoli, L. Vitale, R. Casadei, S. Canaider et al., Gene Expression Profile Analysis in Human T Lymphocytes from Patients with Down Syndrome, Annals of Human Genetics, vol.124, issue.6, pp.546-554, 2004.
DOI : 10.1046/j.1529-8817.2003.00123.x

L. Crom and S. , Selection of oligonucleotides for wholegenome microarrays with semi-automatic update, Bioinformatics, vol.25, issue.1, pp.128-129, 2009.

M. Hamshere, Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease, Nat Genet, vol.41, issue.10, pp.1088-1093, 2009.

J. Laffaire, I. Rivals, L. Dauphinot, F. Pasteau, R. Wehrle et al., Gene expression signature of cerebellar hypoplasia in a mouse model of Down syndrome during postnatal development, BMC Genomics, vol.10, issue.1, 2009.
DOI : 10.1186/1471-2164-10-138

URL : https://hal.archives-ouvertes.fr/hal-00804586

J. Lambert, S. Heath, G. Even, D. Campion, K. Sleegers et al., Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease, Nature Genetics, vol.12, issue.10, pp.1094-1099, 2009.
DOI : 10.1038/ng.439

J. Lejeune, M. Gautier, and R. Turpin, [Study of somatic chromosomes from 9 mongoloid children, C R Hebd Seances Acad Sci, vol.248, issue.11, pp.1721-1722, 1959.

S. Bahn, Gene expression profiling in the adult Down syndrome brain, Genomics, vol.90, issue.6, pp.647-660, 2007.

R. Losick and C. Desplan, Stochasticity and Cell Fate, Science, vol.320, issue.5872, pp.65-68, 2008.
DOI : 10.1126/science.1147888

T. Lu, Y. Pan, S. Kao, C. Li, I. Kohane et al., Gene regulation and DNA damage in the ageing human brain, Nature, vol.34, issue.6994, pp.883-891, 2004.
DOI : 10.1038/nm0602-600

H. Maamar, R. A. Dubnau, and D. , Noise in Gene Expression Determines Cell Fate in Bacillus subtilis, Science, vol.317, issue.5837, pp.526-529, 2007.
DOI : 10.1126/science.1140818

B. Macarthur, A. Ma-'ayan, and I. Lemischka, Systems biology of stem cell fate and cellular reprogramming, Nature Reviews Molecular Cell Biology, vol.283, issue.10, pp.672-681, 2009.
DOI : 10.1038/nrm2766

O. Maes, S. Xu, B. Yu, H. Chertkow, E. Wang et al., Transcriptional profiling of Alzheimer blood mononuclear cells by microarray, Neurobiology of Aging, vol.28, issue.12, pp.1795-1809, 2007.
DOI : 10.1016/j.neurobiolaging.2006.08.004

R. Mao, X. Wang, E. Spitznagel, J. Frelin, L. Ting et al., Primary and secondary transcriptional effects in the developing human Down syndrome brain and heart, Genome Biology, vol.6, issue.13, p.107, 2005.
DOI : 10.1186/gb-2005-6-13-r107

R. Mao, C. Zielke, H. Zielke, and J. Pevsner, Global up-regulation of chromosome 21 gene expression in the developing down syndrome brain, Genomics, vol.81, issue.5, pp.457-467, 2003.
DOI : 10.1016/S0888-7543(03)00035-1

G. Mclachlan and . Dkaac, Analyzinf microarray gene expression data, 2004.

J. Miller, M. Oldham, and D. Geschwind, A Systems Level Analysis of Transcriptional Changes in Alzheimer's Disease and Normal Aging, Journal of Neuroscience, vol.28, issue.6, pp.1410-1420, 2008.
DOI : 10.1523/JNEUROSCI.4098-07.2008

R. Moldrich, L. Dauphinot, J. Laffaire, T. Vitalis, Y. Herault et al., Proliferation deficits and gene expression dysregulation in Down's syndrome (Ts1Cje) neural progenitor cells cultured from neurospheres, Journal of Neuroscience Research, vol.109, issue.14, 2009.
DOI : 10.1002/jnr.22131

Y. Nagasaka, K. Dillner, H. Ebise, R. Teramoto, H. Nakagawa et al., A unique gene expression signature discriminates familial Alzheimer's disease mutation carriers from their wild-type siblings, Proceedings of the National Academy of Sciences, vol.102, issue.41, pp.14854-14859, 2005.
DOI : 10.1073/pnas.0504178102

L. Olson, R. Roper, L. Baxter, E. Carlson, C. Epstein et al., Down syndrome mouse models Ts65Dn, 2004.

M. Potier, I. Rivals, G. Mercier, L. Ettwiller, R. Moldrich et al., Transcriptional disruptions in Down syndrome, p.40, 2006.

M. Delorenzi, Natural gene-expression variation in Down syndrome modulates the outcome of gene-dosage imbalance, 2007.

M. Ray, J. Ruan, and W. Zhang, Variations in the transcriptome of, 2008.

I. Rivals, L. Personnaz, L. Taing, and M. Potier, Enrichment or depletion of a GO category within a class of genes: which test?, Bioinformatics, vol.23, issue.4, pp.401-407, 2007.
DOI : 10.1093/bioinformatics/btl633

URL : https://hal.archives-ouvertes.fr/hal-00801557

R. Roper, L. Baxter, N. Saran, D. Klinedinst, P. Beachy et al., Defective cerebellar response to mitogenic Hedgehog signaling in Down's syndrome mice, Proceedings of the National Academy of Sciences, vol.103, issue.5, pp.1452-1456, 2006.
DOI : 10.1073/pnas.0510750103

H. Sago, E. Carlson, D. Smith, E. Rubin, L. Crnic et al., Genetic Dissection of Region Associated with Behavioral Abnormalities in Mouse Models for Down Syndrome, Pediatric Research, vol.82, issue.5, pp.606-613, 2000.
DOI : 10.1203/00006450-200011000-00009

M. Sartor, G. Leikauf, and M. Medvedovic, LRpath: a logistic regression approach for identifying enriched biological groups in gene expression data, Bioinformatics, vol.25, issue.2, pp.211-217, 2009.
DOI : 10.1093/bioinformatics/btn592

C. Sasik and . Wracj, Microarray truths and consequences, Journal of Molecular Endocrinology, vol.33, issue.1, 2004.
DOI : 10.1677/jme.0.0330001

M. Schena, D. Shalon, R. Davis, and P. Brown, Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray, Science, vol.270, issue.5235, pp.467-470, 1995.
DOI : 10.1126/science.270.5235.467

A. Singh and L. Weinberger, Stochastic gene expression as a molecular switch for viral latency, Current Opinion in Microbiology, vol.12, issue.4, pp.460-466, 2009.
DOI : 10.1016/j.mib.2009.06.016

D. Slonim, K. Koide, K. Johnson, U. Tantravahi, J. Cowan et al., Functional genomic analysis of amniotic fluid cell-free mRNA suggests that oxidative stress is significant in Down syndrome fetuses, Proceedings of the National Academy of Sciences, vol.106, issue.23, pp.9425-9429, 2009.
DOI : 10.1073/pnas.0903909106

J. Storey and R. Tibshirani, Statistical significance for genomewide studies, Proceedings of the National Academy of Sciences, vol.100, issue.16, pp.9440-9445, 2003.
DOI : 10.1073/pnas.1530509100

M. Gillette, Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc Natl Acad Sci U S A, vol.102, issue.43, pp.15545-15550, 2005.

V. Tusher, R. Tibshirani, and G. Chu, Significance analysis of microarrays applied to the ionizing radiation response, Proceedings of the National Academy of Sciences, vol.98, issue.9, pp.5116-5121, 2001.
DOI : 10.1073/pnas.091062498

R. Vencio and I. Shmulevich, ProbCD: enrichment analysis accounting for categorization uncertainty, BMC Bioinformatics, vol.8, issue.1, p.383, 2007.
DOI : 10.1186/1471-2105-8-383

P. Westfall and S. Young, Resampling-based multiple testing, 1992.