M. Cannon and J. E. Slotine, Space-frequency localized basis function networks for nonlinear system estimation and control, Neurocomputing, vol.9, issue.3, pp.293-342, 1995.
DOI : 10.1016/0925-2312(95)00036-1

G. Cybenko, Approximation by Superpositions of a Sigmoidal Function Mathematics of control, signals and systems, pp.303-314, 1989.

K. Hornik, M. Stinchcombe, H. White, and P. Auer, Degree of Approximation Results for Feedforward Networks Approximating Unknown Mappings and Their Derivatives, Neural Computation, vol.6, issue.6, pp.1262-1275, 1994.
DOI : 10.1016/0893-6080(94)90063-9

M. I. Jordan, The Learning of Representations for Sequential Performance, Doctoral Dissertation, 1985.

A. U. Levin, Neural networks in dynamical systems; a system theoretic approach, 1992.

S. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.11, issue.7, pp.674-693, 1989.
DOI : 10.1109/34.192463

K. S. Narendra and K. Parthasarathy, Identification and control of dynamical systems using neural networks, IEEE Transactions on Neural Networks, vol.1, issue.1, pp.4-27, 1990.
DOI : 10.1109/72.80202

O. Nerrand, P. L. Roussel-ragot, G. Personnaz, and . Dreyfus, Neural Networks and Nonlinear Adaptive Filtering: Unifying Concepts and New Algorithms, Neural Computation, vol.5, issue.2, pp.165-199, 1993.
DOI : 10.1162/neco.1990.2.4.490

O. Nerrand, P. Roussel-ragot, D. Urbani, L. Personnaz, and G. Dreyfus, Training recurrent neural networks: why and how? An illustration in dynamical process modeling, IEEE Transactions on Neural Networks, vol.5, issue.2, pp.178-184, 1994.
DOI : 10.1109/72.279183

Y. C. Pati and P. S. Krishnaparasad, Analysis and synthesis of feedforward neural networks using discrete affine wavelet transformations, IEEE Transactions on Neural Networks, vol.4, issue.1, pp.73-85, 1993.
DOI : 10.1109/72.182697

E. Polak, Computational Methods in Optimization: A Unified Approach, 1971.

P. Pucar and M. Millnert, Smooth Hinging Hyperplanes -An Alternative to Neural Nets, Proceedings of 3rd European Control Conference, pp.1173-1178, 1995.

I. Rivals, L. Personnaz, G. Dreyfus, and J. L. Ploix, Modélisation, Classification et Commande par Réseaux de Neurones : Principes Fondamentaux, Méthodologie de Conception et Illustrations Industrielles, Les réseaux de Neurones pour la Modélisation et la Commande de Procédés, pp.1-37, 1995.

I. Rivals and L. Personnaz, BLACK-BOX MODELING WITH STATE-SPACE NEURAL NETWORKS, Neural Adaptive Control Technology I (World Scientific, pp.237-264, 1996.
DOI : 10.1142/9789812830388_0008

D. Urbani, P. L. Roussel-ragot, G. Personnaz, and . Dreyfus, The Selection of Neural Models of Non-linear Dynamical Systems by Statistical Tests, Proceedings of the IEEE Conference on Neural Networks for Signal Processing IV, pp.229-237, 1994.

Q. Zhang, A. Benveniste, and W. Networks, Wavelet networks, IEEE Transactions on Neural Networks, vol.3, issue.6, pp.889-898, 1992.
DOI : 10.1109/72.165591

J. Zhang, G. G. Walter, Y. Miao, and W. N. Wayne-lee, Wavelet neural networks for function learning, Wavelet Neural Networks For Function Learning, pp.1485-1497, 1995.
DOI : 10.1109/78.388860