
HAL Id: hal-00797616
https://espci.hal.science/hal-00797616

Submitted on 6 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Training Wavelet Networks for Nonlinear Dynamic
Input-Output Modeling

Yacine Oussar, Isabelle Rivals, Léon Personnaz, Gerard Dreyfus

To cite this version:
Yacine Oussar, Isabelle Rivals, Léon Personnaz, Gerard Dreyfus. Training Wavelet Networks for Non-
linear Dynamic Input-Output Modeling. Neurocomputing, 1998, 20 (1-3), pp.173-188. �hal-00797616�

https://espci.hal.science/hal-00797616
https://hal.archives-ouvertes.fr

1

Neurocomputing, in press.

Training Wavelet Networks for Nonlinear Dynamic
Input-Output Modeling.

Y. Oussar, I. Rivals, L. Personnaz, G. Dreyfus

Laboratoire d’Électronique

École Supérieure de Physique et Chimie Industrielles

10, rue Vauquelin

F - 75231 PARIS Cedex 05, FRANCE.

Phone: 33 1 40 79 45 41 Fax: 33 1 40 79 44 25

E-mail: Yacine.Oussar@espci.fr

Abstract
In the framework of nonlinear process modeling, we propose training algorithms for

feedback wavelet networks used as nonlinear dynamic models. An original

initialization procedure is presented, that takes the locality of the wavelet functions

into account. Results obtained for the modeling of several processes are presented; a

comparison with networks of neurons with sigmoidal functions is performed.

Keywords: Training, Wavelet networks, Nonlinear dynamic modeling, Neural

networks, Feedback networks, Recurrent networks.

1. INTRODUCTION.

During the past few years, the nonlinear dynamic modeling of processes by neural networks

has been extensively studied. Both input-output [7] [8] and state-space [5] [14] models were

investigated. In standard neural networks, the non-linearities are approximated by superposition

of sigmoidal functions. These networks are universal approximators [2] and have been shown

to be parsimonious [3].

Wavelets are alternative universal approximators; wavelet networks have been investigated in

[17] in the framework of static modeling; in the present paper, we propose a training algorithm

for feedback wavelet networks used as nonlinear dynamic models of processes. We first

present the wavelets that we use and their properties. In section 3, feedforward wavelet

networks for static modeling are presented. In section 4, the training systems and algorithms for

dynamic input-output modeling with wavelet networks, making use of the results of section 3,

are described. For illustration purposes, the modeling of several processes by wavelet networks

and by neural networks with sigmoidal functions is presented in section 5.

2

2. FROM ORTHOGONAL WAVELET DECOMPOSITION TO WAVELET

NETWORKS.

The theory of wavelets was first proposed in the field of multiresolution analysis; among

others, it has been applied to image and signal processing [6]. A family of wavelets is

constructed by translations and dilations performed on a single fixed function called the mother

wavelet. A wavelet φj is derived from its mother wavelet φ by

φj (z) = φ
x – mj

dj
(1)

where its translation factor mj and its dilation factor dj are real numbers (dj > 0). We are

concerned with modeling problems, i.e. with the fitting of a data set by a finite sum of

wavelets. There are several ways to determine the wavelets for this purpose:

– From orthogonal wavelet decomposition theory, it is known that, with a suitable choice of φ,

and if mj and dj are integers satisfying some conditions, the family φj forms an orthogonal

wavelet basis. A weighted sum of such functions with appropriately chosen mj and dj can

thus be used; in this way, only the weights have to be computed [18].

– Another way to design a wavelet network is to determine the mj and dj according to a space-

frequency analysis of the data; this leads to a set of wavelets which are not necessarily

orthogonal [10] [1].

– Alternatively, one can consider a weighted sum of wavelets functions whose parameters mj

and dj are adjustable real numbers, which are to be trained together with the weights.

In the latter approach, wavelets are considered as a family of parameterized nonlinear functions

which can be used for nonlinear regression; their parameters are estimated through "training".

The present paper introduces training algorithms for feedback wavelet networks used for

dynamic modeling, which are similar in spirit to training algorithms used for feedback neural

networks.

Choice of a mother wavelet

In the present paper, we choose the first derivative of a gaussian function,

φ(x) = ± x exp ±
1

2
x2 as a mother wavelet. It may be regarded as a differentiable version of

the Haar mother wavelet, just as the sigmoid is a differentiable version of a step function, and it

has the universal approximation property [17]. This mother wavelet has also been used in

reference [17]. More complex wavelet functions, such as the second derivative of the gaussian

(as in [1]) may be used, but they will not be considered here.

The wavelet network.

In the case of a problem with Ni inputs, multidimensional wavelets must be considered. The

simplest, most frequent choice ([1], [6], [17], [18]) is that of separable wavelets, i.e. the

product of Ni monodimensional wavelets of each input:

Φj(x) = φ zjk∏
k=1

Ni

 with zjk =
xk – mjk

djk
(2)

3

where mj and dj are the translation and dilation vectors. We consider wavelet networks of the

form:

y = ψ(x) = cj∑
j=1

Nw

Φj(x) + a0 + ak∑
k=1

Ni

xk . (3)

(3) can be viewed as a network with Ni inputs, a layer of Nw wavelets of dimension Ni, a bias

term, and a linear output neuron. When linear terms are expected to play an important role in the

model, it is customary to have additional direct connections from inputs to outputs, since there

is no point in using wavelets for reconstructing linear terms. Such a network is shown in Figure

1.

1

y

. . . .Φ1 Φ2 ΦNw

∑

cNwc1 c2

a0 a1

.

x1 xNix2

aNi

Linear output neuron

Layer of
wavelets

Figure 1. A feedforward wavelet network.

3. STATIC MODELING USING FEEDFORWARD WAVELET NETWORKS.

Static modeling with wavelet networks has been investigated by other authors in [17]. In order

to make the paper self-contained, we devote the present section to introducing notations and to

recalling basic equations which will be used in Section 4 for dynamic modeling.

We consider a process with Ni inputs and a scalar output yp. Steady-state measurements of the

inputs and outputs of the process build up a training set of N examples x n,yp
n ,

x n = x1
n, …, xNi

n T being the input vector for example n and yp
n the corresponding measured

process output. In the domain defined by the training set, the static behavior of the process is

assumed to be described by:

yp
n = f x n + wn n = 1 to N (4)

where f is an unknown nonlinear function, and w n denotes a set of independent identically

distributed random variables with zero mean and variance σw
2.

We associate the following wavelet network to the assumed model (4):

y n = ψ x n,θ n = 1 to N (5)

where yn is the model output value related to example n, the nonlinear function ψ is given by

4

relation (3), and θ is the set of adjustable parameters:

θ = mjk, djk, cj, ak, a0 with j = 1 , ... , Nw and k = 1 , ... , Ni (6)

θ is to be estimated by training so that ψ approximates the unknown function f on the domain

defined by the training set.

3.1. Training feedforward wavelet networks.

As usual, the training is based on the minimization of the following quadratic cost function:

J (θ) = 1
2

 yp
n–y n 2∑

n=1

N

 = 1
2

 en 2∑
n=1

N

(7)

The minimization is performed by iterative gradient-based methods.

The partial derivative of the cost function with respect to θ is:
∂J

∂θ
 = – en∑

n=1

N ∂yn

∂θ
(8)

where
∂y n

∂θ
 is a short notation for

 ∂y

∂θθ x = xn
. The components of the latter vector are:

- parameter a0:

∂yn

∂a0

 = 1 (9)

- direct connection parameters:
∂yn

∂ak

 = xk
n k = 1 , . . . , Ni (10)

- weights:
 ∂yn

∂cj
= Φj(x

n) j = 1 , ... , Nw (11)

- translations:
 ∂yn

∂mjk
= ±

cj

djk

∂Φj

∂zjk x=xn

k = 1 , ... , Ni and j = 1 , ... , Nw (12)

with
∂Φj

∂zjk

x=x n

 = φ zj1
n φ zj2

n ... φ ' zjk
n ... φ zjNi

n (13)

where φ ' zjk
n is the value of the derivative of the scalar mother wavelet at point zjk

n :

φ ' zjk
n =

dφ(z)
dz

z=zjk

n
(14)

- dilations:
 ∂yn

∂djk
= ±

cj

djk
zjk

n
∂Φj

∂zjk x=xn

k = 1 , ... , Ni and j = 1 , ... , Nw (15)

At each iteration, the parameters are modified using the gradient (8), according to:

5

∆θ = –M
∂J

∂θ
(16)

where M is some definite positive matrix (M = µ Id, µ>0 in the case of a simple gradient

descent, or M = µ H -1, µ>0 where H -1 is an approximation, updated iteratively, of the inverse

Hessian, for quasi-Newton methods).

3.2. Initialization of the network parameters.

Initializing the wavelet network parameters is an important issue. Similarly to Radial Basis

Function networks (and in contrast to neural networks using sigmoidal functions), a random

initialization of all the parameters to small values (as usually done with neural networks) is not

desirable since this may make some wavelets too local (small dilations) and make the

components of the gradient of the cost function very small in areas of interest. In general, one

wants to take advantage of the input space domains where the wavelets are not zero.

Therefore, we propose an initialization for the mother wavelet

φ(x) = ± x exp ±
1

2
x2 based on

the input domains defined by the examples of the training sequence. We denote by [αk, βk] the

domain containing the values of the k-th component of the input vectors of the examples. We

initialize the vector m of wavelet j at the center of the parallelepiped defined by the Ni intervals
{[αk, βk]}: mjk = 1

2
 αk + βk . The dilation parameters are initialized to the value 0.2 βk – αk

in order to guarantee that the wavelets extend initially over the whole input domain. The choice

of the ak (k = 1 , ... , Ni) and cj (j = 1 , ... , Nw) is less critical: these parameters are

initialized to small random values.

3.3. Stopping conditions for training.

The algorithm is stopped when one of several conditions is satisfied: the Euclidean norm of the

gradient, or of the variation of the gradient, or of the variation of the parameters, reaches a

lower bound, or the number of iterations reaches a fixed maximum, whichever is satisfied first.

The final performance of the wavelet network model depends on whether: (i) the assumptions

made about the model (relation 4) are appropriate, (ii) the training set is large enough, (iii) the

family contains a function which is an approximation of f with the desired accuracy in the

domain defined by the training set, (iv) an efficient (i.e. second-order) training algorithm is

used.

4. DYNAMIC MODELING USING WAVELET NETWORKS.

We propose to extend the use of wavelet networks to the dynamic modeling of single-input-

single-output (SISO) processes. The training set consists of two sequences of length N: the

input sequence u n and the measured process output yp n . As in the static case, the aim is

to approximate f by a wavelet network.

Depending on the assumptions about the noise, either feedforward or feedback predictors may

6

be required [9]. For example, if it is assumed that the noise acting on the process is state noise

(see for instance equation (35) of section 5.2), i.e. if a Nonlinear AutoRegressive with

eXogeneous inputs (NARX, or Equation Error) model
 yp(n) = f yp n ± 1) , yp n ± 2 , ..., yp n ± Ns , u n ± 1 , ..., u n ± Ne + wn (17)

is assumed to be valid, then the optimal associated predictor is a feedforward one, whose inputs

are past outputs of the process yp and the external inputs u:
 y(n) = f yp n-1 , yp n-2 , ... , yp n-Ns , u n-1 , ... , u n-Ne . (18)

f is a unknown nonlinear function, which is to be approximated by a wavelet network ψ given

by (3).

Conversely, if it is assumed that the noise is output noise, i.e. if an Output Error model
 s(n) = f s n ± 1) , s n ± 2 , ..., s n ± Ns , u n ± 1 , ..., u n ± Ne

yp(n) = s(n) + w(n)
(19)

is assumed to be valid, then the optimal associated predictor is a feedback one, whose inputs are

past outputs of the model y and the external inputs u:
 y(n) = f y n-1 , y n-2 , ... , y n-Ns , u n-1 , ... , u n-Ne (20)

In the absence of noise, either feedforward or feedback predictors can be used. If the goal is the

design of a simulation model, i.e. of a model that can compute the output more than one time

step ahead, a feedback predictor should be trained [9].

Ιn all cases, θ is to be estimated so that ψ approximates the unknown function f on the domain

defined by the training set.

We define the copy n (n = 1,..., N) as the wavelet network configuration giving y(n) at its

output in the case of a feedforward predictor, and as the feedforward part of the network

canonical form in the case of a feedback predictor [8]. In order to keep the notations equivalent

with the previous section we note: y n = y(n).

4.1. Training feedforward wavelet predictors.

In this case, the N copies are independent, and the training is similar to that of a static model.

Therefore, the input vector of copy n can be viewed as the vector x n defined in section 3 and

yp n as the process output defined as yp
n. More precisely, the inputs of copy n can be

renamed as:

- external inputs: xk
n = u(n-k) with k = 1, ... , Ne

- state inputs: xk
n = yp n-k+Ne with k = Ne+1 , ... , Ne+Ns

Since the state inputs of the copies are forced to the corresponding desired values, the predictor

is said to be trained in a directed [8], or teacher-forced [4] fashion.

4.2. Training feedback wavelet predictors.

In this case, the N copies are not independent: the N output values y n = y(n) of the network

may be considered as being computed by a large feedforward network made of N cascaded

copies of the feedforward part of the canonical form of the feedback network [8]: the state

7

inputs of copy n are equal to the state outputs of copy n-1. The inputs and outputs of copy n

are renamed as:

- external inputs: xk
n = u n-k with k = 1 , ... , Ne.

- state inputs: xk
n = y n-k+Ne with k = Ne+1 , ... , Ne+Ns.

- state outputs: xk
n = y(n-k+Ne+Ns+1) with k = Ne+Ns+1 , ... , Ne+2Ns .

xNe+Ns+1
n = y n = yn is the n-th value of the output of the network.

θ
n
 = mjk

n , djk
n , cj

n, ak
n, a0

n with j = 1 , … , Nw and k = 1 , … , Ne+Ns

is the set of parameters of copy n. The feedback predictor network and copy n are shown on

figure 2.

Since the state inputs of the first copy only are forced to desired values, the predictor is said to

be trained in a semi-directed fashion [8], (also known as backpropagation through time [15]: the

gradient of the cost function is computed by a single backpropagation through the N copies).

The gradient of J (θ) = 1
2

 yp
n–yn 2∑

n=1

N

 = 1
2

 en 2∑
n=1

N

 with respect to θ can be expressed as the

sum of the gradient with respect to each of the N copies θn of θ :

∂J

∂θ
 =

∂J

∂θ
n∑

n=1

N

 =
∂J

∂y n

∂y n

∂θ
n
 ∑

n=1

N

(21)

The analytical expressions of
∂y n

∂mjk
n

,
∂y n

∂djk
n

,
∂yn

∂cj
n
,
∂yn

∂ak
n

,
∂yn

∂a0
n
 which are the components of

∂y n

∂θ
n
 are

identical to those given (without superscript n for θ) in relations (9) – (15), for the training of

feedforward nets.

The set of partial derivatives
∂J
∂y n

 can be computed by backpropagation through the

feedforward network consisting of the N cascaded copies.

We introduce the intermediate variables {qk
n }, qk

n being the partial derivative of -J with respect

to xk
n, the state variable xk of the n-th copy:

qk
n = –

∂J

∂xk
n

(22)

Copy N:

- output:
 qout

N = qNe+Ns+1
N = eN (23)

- other output state variables:

qk
N = 0 with k = Ne+Ns+2 , ... , Ne+2 Ns (24)

- for the Ns state inputs :

qk
N = ak

N +
cj

N

djk
N

∂Φj

∂zjk
N∑

j=1

Nw

qout
N with k = Ne+1 , ... , Ne+Ns (25)

Copies n = N-1 to 2:

- output:
 qout

n = en + qNe+1
n+1 (26)

8

1 u(n-1) u(n-Ne) y(n-Ns)y(n-1) y(n-2)

y(n-Ns+1)y(n-1) y(n-2)y(n)

. . . .

. . .

.

Φ1 Φ 2 ΦNw

∑

Unit
delays

. . .

.
1 11

(a)

1

. . . .

.

Φ1 Φ2 ΦNw

∑

1 1

.

Ns output state variables

Ns input state variablesNe external inputs

xNe+2Ns

n

xNe+Ns

n
 xNe+1

n
 xNe

n
 x1

n

1

yn = xNe+Ns+1

n

(b)

Figure 2. (a) feedback predictor network; (b) n-th copy for training.

- other output state variables:
 qk

n = qk-Ns

n+1 with k = Ne+Ns+2 , ... , Ne+2 Ns (27)

- the Ns-1 first state inputs :

9

qk

n = qk+Ns+1
n + ak

n +
cj

n

djk
n

∂Φj

∂zjk
n∑

j=1

Nw

qout
n with k = Ne+1 , ... , Ne+Ns-1 (28)

- the last state input :

qNe+Ns
n = aNe+Ns

n +
cj

n

djk
n

∂Φj

∂zjk
n∑

j=1

Nw

 qout
n (29)

Copy 1:

- output:
 qout

1 = e1 + qNe+1
2 (30)

5. SIMULATION RESULTS.

In this section we make use of the above algorithms for training input-output wavelet networks

on data gathered from simulated and from real processes, and we make use of the algorithms

presented in [8] for training input-output neural networks with one hidden layer of sigmoidal

neurons on the same data.

The wavelet networks are input-output models as defined by (18) or (20), where the unknown

function f is approximated by wavelet networks whose mother wavelet is described in section 2

(derivative of a gaussian).

The neural networks used have one hidden layer of sigmoidal units and direct connections from

the inputs:

y (x) = cj∑
j=1

Nσ

tanh vj(x) + a0 + ak∑
k=1

Ni

xk with vj(x) = wjk∑
k=1

Ni

xk (31)

We denote by Training Mean Square Error (TMSE) the mean square error on the training set:

TMSE = 1
N

 yp(n) – yn 2∑
n=1

N

 = 2
N

 J (32)

The performance of the model is estimated by the Performance Mean Square Error (PMSE),

computed on a test sequence.

The training procedure starts with a simple gradient method (500 iterations) which is followed

by a quasi-Newton method (BFGS with line search by Nash [11]).

5.1. Modeling of a simulated process without noise.

The process considered here is simulated with a second order nonlinear equation. This process

has been used to illustrate a selection procedure for neural models [16]. The output of the

process is given by:

yp(n) = f yp(n-1), yp(n-2), u(n-1) =
24 + yp n-1

30
 yp n-1 – 0.8 u(n-1)2

1 + u(n-1)2
 yp n-2 + 0.5u n-1

(33)

Since noise is absent, either feedforward or feedback predictors can be used. In order to obtain

a simulation model of the process, we chose to train a feedback predictor:

y(n) = ψ y(n-1), y(n-2), u(n-1), θ (34)

A training and a test sequence of 1000 samples each were generated. The input sequence for

10

both training and test consists of pulses with random amplitude in the range [-5,5] and with

random duration between 1 and 20 sampling periods. Figures 3a and 3b show the training

sequence.

-6

-4

-2

0

2

4

6

0 200 400 600 800 1000

(a)

-5

0

5

0 200 400 600 800 1000

(b)

Figure 3: (a) Training input sequence; (b) Training output sequence.

Several feedback wavelet networks were trained, with fifty different initializations for each

network. The results corresponding to the minimal PMSE's are given in table 1. Additional

wavelets do not improve the performance.

Number of wavelets Number of parameters TMSE PMSE

1 11 7.6 10-2 1.5 10-1

2 18 2.0 10-2 3.6 10-2

3 25 2.2 10-3 6.7 10-3

4 32 2.8 10-4 1.3 10-3

5 39 5.2 10-5 2.9 10-4

6 46 3.8 10-6 2.9 10-5

Table 1. Wavelet modeling results for the noiseless simulated process.

11

Several feedback neural networks were trained, with fifty different initializations for each

network. The results corresponding to the minimal PMSE's are given in table 2. Additional

hidden neurons do not improve the performance.

Number of sigmoids Number of parameters TMSE PMSE

1 9 1.1 10-1 1.8 10-1

2 14 7.1 10-2 1.0 10-1

3 19 1.1 10-3 8.4 10-3

4 24 3.9 10-4 2.3 10-3

5 29 4.5 10-6 1.8 10-5

6 34 4.2 10-6 1.6 10-5

Table 2. Neural modeling results for the noiseless simulated process.

In this example, the two types of networks perform with roughly the same accuracy.

5.2. Modeling of a simulated process with noise.

The previous trainings were performed with noiseless data. In this section, we study the case

where a zero-mean noise acts on the process. As described in section 4, we consider two cases:

NARX models and Output Error models.

In the first one, the state variables of the model used for simulating the process are the output of

the process at times n and n-1, and the noise is added to the state variables. It is a NARX model

given by the following equation:
yp(n) = f yp(n-1), yp(n-2), u(n-1) + w(n) (35)

where f is the function introduced in the previous section.

In the second case, the state variables of the model used for simulating the process are not

subject to noise, but noise is added to the output variable: it is an Output Error model given by

the following equations:
s(n) = f s(n-1), s(n-2), u(n-1)
yp(n) = s(n) + w(n)

(36)

where s(n) and s(n-1) are the state variables.

Since we are interested in black-box modeling, we generate training and test data from (35) or

(36). The input sequences used are identical to those shown in the previous section. The

processes are simulated with a noise of variance σw
2 = 10-2. Once the training and test sequences

are generated, we pretend not to know equations (35) and (36). Since we must make a decision

as to whether we train a feedforward predictor or a feedback predictor, we have to make an

assumption about the effect of noise on the process (output noise or state noise). The results

presented below have been obtained by making the right assumption: for modeling the data

generated by equation (35), we have trained a feedforward wavelet predictor, and, for modeling

12

the data generated by equation (36), we have used a feedback predictor (the adverse effect of

making the wrong assumption about the noise has been demonstrated in [8]).

Since we are modeling a process with noise, the goal is the following: find the smallest network

such that the error on the test set and the error on the training be as close as possible to the

variance of the noise. Because the process is simulated, we know the variance of the noise, so

that we know whether this goal is achieved.

As in the case of the process without noise, several networks with an increasing number of

wavelets were trained. The optimal Nw, for which the PMSE is smallest (no overfitting occurs),

is 5; the results presented on table 3 show that the variance of the noise is indeed reached.

TMSE PMSE

NARX Model 9.6 10-3 1.0 10-2

Output Error Model 1.0 10-2 1.2 10-2

Table 3. Wavelet modeling results for noisy simulated processes,

when the right assumption about the effect of noise is made.

5.3. Modeling of a real process.

The process to be modeled is the hydraulic actuator of a robot arm. The external input u is the

position of a valve and the output yp is the oil pressure. A sequence of 1024 points is available.

We consider the first half of the data sequence as a training sequence. We use a feedback

predictor with Ne=1 and Ns=2 so that:

y(n) = ψ(y(n-1), y(n-2), u(n-1), θ) (37)

Predictors having increasing numbers of wavelets were trained, with 50 initializations for each

predictor. The best PMSE is obtained with a network of 2 wavelets (18 parameters); the

corresponding values of the TMSE and PMSE are:

TMSE = 0.11 PMSE = 0.13

Figure 4 shows the responses of the process and of the wavelet network on the test sequence.

Table 4 shows the results obtained on the same problem with other input-output models. The

neural network model whose performance is reported has three hidden neurons (best PMSE of

50 trainings with different initializations).

Input-output model PMSE Numbers of parameters Reference

Hinging hyperplanes 0.34 14 [12]

Neural Network 0.14 19 This paper

Wavelet network 0.13 18 This paper

Table 4. A comparison of different input-output models of the hydraulic actuator.

In this modeling problem, wavelet and neural networks perform equivalently. However, these

13

results are still not as satisfactory as those obtained in [13] with a state-space model using a

neural network with sigmoid functions; state-space modeling with wavelet networks will not be

considered in the present paper.

0

5

0 100 200 300 400 500

Process
Model

Figure 4. Model and process outputs on the test sequence.

6. CONCLUSION.

In this paper, we extend the use of wavelet networks for function approximation to dynamic

nonlinear input-output modeling of processes. We show how to train such networks by a

classic minimization of a cost function through second order gradient descent implemented in a

backpropagation scheme, with appropriate initialization of the translation and dilation

parameters. The training procedure is illustrated on the modeling of simulated and real

processes. A comparison with classic sigmoidal neural networks leads to the conclusion that the

two types of networks can perform equivalently in terms of accuracy and parsimony for

nonlinear input-output modeling of processes with a small number of inputs, provided the

technical precautions outlined above (proper initialization and efficient training algorithms) are

taken.

References.

[1] M. Cannon and J.-J. E. Slotine, Space-Frequency Localized Basis Function Networks for

Nonlinear System Estimation and Control, Neurocomputing 9 (3) (1995) 293-342.

[2] G. Cybenko, Approximation by Superpositions of a Sigmoidal Function, Mathematics of

control, signals and systems, 2 (1989) 303-314.

[3] K. Hornik, M. Stinchcombe, H. White and P. Auer, Degree of Approximation Results for

Feedforward Networks Approximating Unknown Mappings and Their Derivatives,

Neural Computation, 6 (6) (1994) 1262-1275.

[4] M. I. Jordan, The Learning of Representations for Sequential Performance, Doctoral

Dissertation, University of California, San Diego, 1985.

[5] A. U. Levin, Neural networks in dynamical systems; a system theoretic approach, PhD

Thesis, Yale University, New Haven, CT, 1992.

14

[6] S. Mallat, A Theory for Multiresolution Signal Decomposition: The Wavelet Transform,

IEEE Trans. Pattern Anal. Machine Intell. 11 (7) (1989) 674-693.

[7] K. S. Narendra and K. Parthasarathy, Identification and Control Of Dynamical Systems

Using Neural Networks, IEEE Trans. on Neural Networks, 1 (1) (1990) 4-27.

[8] O. Nerrand, P. Roussel-Ragot. L. Personnaz, G. Dreyfus, Neural Networks and Non-

linear Adaptive Filtering: Unifying Concepts and New Algorithms, Neural Computation,

5 (2) (1993) 165-199.

[9] O. Nerrand , P. Roussel-Ragot, D. Urbani, L. Personnaz, G. Dreyfus, Training recurrent

neural networks: why and how? An Illustration in Process Modeling, IEEE Trans. on

Neural Networks 5 (2) (1994) 178-184.

[10] Y. C. Pati and P. S. Krishnaparasad, Analysis and Synthesis of Feedforward Neural

Networks Using Discrete Affine Wavelet Transformations, IEEE Trans. on Neural

Networks 4 (1) (1993) 73-85.

[11] E. Polak, Computational Methods in Optimization: A Unified Approach (Academic Press,

New–York, 1971).

[12] P. Pucar and M. Millnert, Smooth Hinging Hyperplanes - An Alternative to Neural Nets,

in: Proceedings of 3rd European Control Conference, Vol. 2 (Rome, 1995) 1173-1178.

[13] I. Rivals, L. Personnaz, G. Dreyfus, J.L. Ploix, Modélisation, Classification et

Commande par Réseaux de Neurones : Principes Fondamentaux, Méthodologie de

Conception et Illustrations Industrielles, in: J.P. Corriou, ed., Les réseaux de Neurones

pour la Modélisation et la Commande de Procédés (Lavoisier Tec et Doc, 1995) 1-37.

[14] I. Rivals and L. Personnaz, Black Box Modeling With State-Space Neural Networks, in:

R. Zbikowski and K. J. Hunt eds., Neural Adaptive Control Technology I (World

Scientific, Singapore, 1996) 237-264.

[15] D. E. Rumelhart, and J. L. McClelland, Parallel Distributed Processing, (MIT Press,

Cambridge, MA, 1986).

[16], D. Urbani, P. Roussel-Ragot. L. Personnaz and G. Dreyfus, The Selection of Neural

Models of Non-linear Dynamical Systems by Statistical Tests, in: Proceedings of the

IEEE Conference on Neural Networks for Signal Processing IV, (Greece ,1994) 229-

237.

[17] Q. Zhang and A. Benveniste, Wavelet Networks, IEEE Trans. on Neural Networks 3 (6)

(1992) 889-898.

[18] J. Zhang, G. G. Walter, Y. Miao and W. N. Wayne Lee, Wavelet Neural Networks For

Function Learning, IEEE Trans. on Signal Processing 43 (6) (1995) 1485-1497.

