Skip to Main content Skip to Navigation

Welcome to the Marine Environmental Chemistry (CEM) Group collection

The Marine Environment Chemistry (CEM) team focuses on several environmental issues:

  1. Characterization and quantification of organic and inorganic elements in the marine environment,
  2. Estimation of their flow from the continent to the oceans and their monitoring by optical means,
  3. Definition of their sources and fate in the water column,
  4. effect of sedimentary diagenesis on anthropogenic inputs.

These themes are a component of the general problem of understanding the cycles of elements and the effect of the anthropization of environments, which are crucial phenomena in the context of global climate change.


Latest submissions in HAL !

[hal-02110198] Assimilation of SeaWiFS chlorophyll data into a 3D-coupled physical–biogeochemical model applied to a freshwater-influenced coastal zone

In order to predict eutrophication events in coastal areas we tested an assimilation scheme based on sequential data assimilation of SeaWiFS chlorophyll data into a coupled 3D physical–biogeochemical model. The area investigated is a semi-enclosed estuarine system (Gulf of Fos–North-western Mediterranean Sea) closely linked to the Rhone River delta. This system is subjected to episodic eutrophication caused by certain hydrodynamic conditions and intermittent nutrient inputs. The 3D hydrodynamic model Symphonie was coupled to the biogeochemical modelling platform Eco3M. Surface chlorophyll concentrations were derived from SeaWiFS data using the OC5 algorithm and were sequentially assimilated using a singular evolutive extended Kalman filter. Assimilation efficiency was evaluated through an independent in situ data set collected during a field survey that took place in May 2001 (ModelFos cruise). An original approach was used in constructing the state vector and the observation vector. By assimilating pseudo-salinity extracted from the model biogeochemical dynamics in both open sea and plume region were respected. We proved that substantial improvements were made in short-term forecasts by integrating such satellite-estimated chlorophyll maps. We showed that missing freshwater inputs could be corrected to a certain extent by the assimilation process. Simulated concentrations of surface chlorophyll and other basic components of the pelagic ecosystem such as nitrates were improved by assimilating surface chlorophyll maps. Finally we showed the coherent spatial behaviour of the filter over the whole modelled domain.

[hal-03287923] A decade of observations and achievements of the MOOSE observatory in the Northwestern Mediterranean Sea




Catherine Beaussier
Tél. (+33) 4 95 04 41 43

Archive créée et administrée sur la plateforme HAL du CCSD

Legal aspects : Contributor obligations

Dépôt de fichier : que faire en fonction de la version que vous déposez






Evolution of the submissions