Skip to Main content Skip to Navigation
Journal articles

Tackling random fields non-linearities with unsupervised clustering of polynomial chaos expansion in latent space: application to global sensitivity analysis of river flooding

Siham El Garroussi Sophie Ricci Matthias de Lozzo Nicole Goutal Didier Lucor 1 
1 DATAFLOT - DAta science, TrAnsition, Fluid instabiLity, contrOl, Turbulence
LIMSI - Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur
Abstract : Abstract A surrogate model is developed to accurately approximate a two-dimensional hydrodynamics numerical solver in order to conduct a reduced-cost variance-based global sensitivity analysis of the hydraulic state. The impact of uncertainties in river bottom friction and boundary conditions on the simulated water depth is analyzed for quasi-unsteady flows. An autoencoder technique adapted to non-linear variable dimension reduction is used to reduce the multi-dimensional model output so that the formulation of the surrogate remains computationally parsimonious. In addition, following the divide-and-conquer principle, a mixture of local polynomial chaos expansions is proposed to deal with non-linearity in the hydraulic state with respect to uncertain inputs. Machine learning techniques are used to automatically partition the input space into clusters that are not affected by non-linearities and support accurate surrogates. This combined strategy is applied to a reach of the Garonne River where river and floodplains dynamics are simulated by the numerical solver Telemac-2D. The merits of this strategy are highlighted when the flood front reaches regions where the topography features a strong gradient and where, consequently, strong non-linearities occur between the water depth and friction as well as hydrologic input forcing. By applying this strategy, the $$Q_2$$ Q 2 metric improves by 90% compared to a classical polynomial chaos expansion surrogate, resulting in a much more reliable sensitivity analysis. This is particularly important in floodplain areas where human and economic activities are at stake.
Document type :
Journal articles
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-03335023
Contributor : Didier Lucor Connect in order to contact the contributor
Submitted on : Friday, November 26, 2021 - 11:05:58 PM
Last modification on : Sunday, June 26, 2022 - 3:21:48 AM
Long-term archiving on: : Sunday, February 27, 2022 - 8:27:41 PM

File

ElGarroussi2021_Article_Tackli...
Publisher files allowed on an open archive

Identifiers

Citation

Siham El Garroussi, Sophie Ricci, Matthias de Lozzo, Nicole Goutal, Didier Lucor. Tackling random fields non-linearities with unsupervised clustering of polynomial chaos expansion in latent space: application to global sensitivity analysis of river flooding. Stochastic Environmental Research and Risk Assessment, Springer Verlag (Germany), 2021, ⟨10.1007/s00477-021-02060-7⟩. ⟨hal-03335023⟩

Share

Metrics

Record views

62

Files downloads

10