Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

Towards a further understanding of the dynamics in the excitatory NNLIF neuron model: blow-up and global existence

Abstract : The Nonlinear Noisy Leaky Integrate and Fire (NNLIF) model is widely used to describe the dynamics of neural networks after a diffusive approximation of the mean-field limit of a stochastic differential equation. In previous works, many qualitative results were obtained: global existence in the inhibitory case, finite-time blow-up in the excitatory case, convergence towards stationary states in the weak connectivity regime. In this article, we refine some of these results in order to foster the understanding of the model. We prove with deterministic tools that blow-up is systematic in highly connected excitatory networks. Then, we show that a relatively weak control on the firing rate suffices to obtain global-in-time existence of classical solutions.
Document type :
Preprints, Working Papers, ...
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-02508412
Contributor : Pierre Roux Connect in order to contact the contributor
Submitted on : Thursday, July 1, 2021 - 5:35:02 PM
Last modification on : Tuesday, September 28, 2021 - 5:16:21 PM

File

ArticleNNLIF.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-02508412, version 2

Citation

Pierre Roux, Delphine Salort. Towards a further understanding of the dynamics in the excitatory NNLIF neuron model: blow-up and global existence. 2021. ⟨hal-02508412v2⟩

Share

Metrics

Record views

43

Files downloads

37