Insights into the sonochemical synthesis and properties of salt-free intrinsic plutonium colloids

Abstract : Fundamental knowledge on intrinsic plutonium colloids is important for the prediction of plutonium behaviour in the geosphere and in engineered systems. The first synthetic route to obtain salt-free intrinsic plutonium colloids by ultrasonic treatment of PuO 2 suspensions in pure water is reported. Kinetics showed that both chemical and mechanical effects of ultrasound contribute to the mechanism of Pu colloid formation. In the first stage, fragmentation of initial PuO 2 particles provides larger surface contact between cavitation bubbles and solids. Furthermore, hydrogen formed during sonochemical water splitting enables reduction of Pu(IV) to more soluble Pu(III), which then re-oxidizes yielding Pu(IV) colloid. A comparative study of nanostructured PuO 2 and Pu colloids produced by sonochemical and hydrolytic methods, has been conducted using HRTEM, Pu L III-edge XAS, and O K-edge NEXAFS/ STXM. Characterization of Pu colloids revealed a correlation between the number of Pu-O and Pu-Pu contacts and the atomic surface-to-volume ratio of the PuO 2 nanoparticles. NEXAFS indicated that oxygen state in hydrolytic Pu colloid is influenced by hydrolysed Pu(IV) species to a greater extent than in sonochemical PuO 2 nanoparticles. In general, hydrolytic and sonochemical Pu colloids can be described as core-shell nanoparticles composed of quasi-stoichiometric PuO 2 cores and hydrolyzed Pu(IV) moieties at the surface shell.
Document type :
Journal articles
Complete list of metadatas

Cited literature [36 references]  Display  Hide  Download
Contributor : Xavier Le Goff <>
Submitted on : Friday, April 26, 2019 - 3:40:35 PM
Last modification on : Tuesday, November 26, 2019 - 4:16:02 PM


Publisher files allowed on an open archive



Elodie Dalodière, Matthieu Virot, Vincent Morosini, Tony Chave, Thomas Dumas, et al.. Insights into the sonochemical synthesis and properties of salt-free intrinsic plutonium colloids. Scientific Reports, Nature Publishing Group, 2017, 7 (1), ⟨10.1038/srep43514⟩. ⟨hal-02075390⟩



Record views


Files downloads