Underwater Adhesion between Biopolymer Model Surfaces and Hydrogels - UFR de Chimie de Sorbonne-Université Accéder directement au contenu
Thèse Année : 2022

Underwater Adhesion between Biopolymer Model Surfaces and Hydrogels

Adhésion en Milieu Aqueux entre Adhésifs et Surfaces Modèles à Base d'Hydrogels Biopolymères

Résumé

While the adhesion between synthetic materials has been rather well-studied experimentally and theoretically, there is still a lack of knowledge on bioadhesion, which could be tackled with biopolymer systems which could mimic biosurfaces, biotissues and bioadhesives. However, this idea is limited by the difficulty in designing a model structure and controlling the physical chemistry properties of biopolymer-made materials. Bioadhesion mechanisms can be tackled by studying the underwater adhesion between hydrogel adhesives and solid substrates modified by hydrogel thin films. This allows to separate interfacial contribution with molecular specific interactions and bulk contribution with viscoelastic properties to adhesion. First, a model system based on gelatins has been designed and underwater adhesion promoted by electrostatic interactions was investigated. On one side, stable surface-attached gelatin films with finely adjustable thickness and swelling were achieved using Cross-Linking and Grafting (CLAG) strategy. On the other side, dual-crosslinked gelatin hydrogel adhesives were synthesized by adding chemical crosslinks to physical gelatin networks. The microscopic structure of both physical and chemical crosslinks was well-controlled, with the determination of the chain length between crosslinks from shear modulus and phantom network model. Underwater adhesion measured by probe tack tests showed that dual-crosslinked gelatin hydrogels have the same adhesive properties at all temperatures even if their strength decreases with heating. We were also able to separate the effects of physical and chemical networks on adhesion. Second, the underwater adhesion between double-networks containing carrageenan and solid substrates modified by micro-patterned hydrogels was investigated. It was shown that the smaller the micro-patterns the higher the adhesion energy. This work has provided an insight of the physico-chemical and physical parameters that control underwater adhesion of biopolymers systems such as the bulk viscoelastic properties, the charge and the topography of the surface. It would help for better understanding bioadhesion and designing underwater adhesives.
Alors que l'adhésion entre matériaux synthétiques a été plutôt bien étudiée expérimentalement et théoriquement, les mécanismes de bioadhésion sont encore très peu compris. Une manière de les aborder serait d’utiliser des systèmes biopolymères qui pourraient imiter biosurfaces, biotissus et bioadhésifs. Cependant, cette idée est confrontée à la difficulté de concevoir une structure modèle et de contrôler les propriétés physico-chimiques des matériaux fabriqués à partir de biopolymères. Les mécanismes de bioadhésion peuvent être mieux compris en étudiant l'adhésion en milieu immergé entre adhésifs hydrogels et substrats solides modifiés par des films minces d'hydrogel. Cela permet de séparer la contribution interfaciale avec des interactions spécifiques moléculaires et de la contribution du volume avec les propriétés viscoélastiques à l'adhésion. Dans un premier temps, nous avons conçu un système modèle avec de la gélatine et noua avons étudié l'adhésion en milieu immergé favorisée par des interactions électrostatiques. D'une part, des films stables de gélatine attachés en surface d’épaisseur et de gonflement finement ajustables ont été réalisés en utilisant la stratégie Cross-Linking and Grafting (CLAG). D'autre part, des adhésifs hydrogels de gélatine à double réticulation ont été synthétisés en ajoutant des réticulations chimiques aux réseaux de gélatine physiques. La structure microscopique des réticulations physique et chimique a été bien contrôlée, avec la détermination de la longueur de chaîne entre les réticulations à partir du module de cisaillement et du modèle de réseau fantôme. L'adhésion en milieu immergé mesurée par des tests de probe-tack a montré que les hydrogels de gélatine à double réticulation ont les mêmes propriétés adhésives quelle que soit la température, même si leur résistance diminue avec le chauffage. Nous avons également été en mesure de séparer les effets des réseaux physiques et chimiques sur l'adhésion. Dans un deuxième temps, nous avons étudié l'adhésion en milieu immergé entre des réseaux doubles contenant du carraghénane et des substrats solides modifiés par des micro-motifs d’hydrogels. Il a été démontré que plus les micro-motifs sont petits, plus l'énergie d'adhésion est élevée. Ce travail a fourni un aperçu des paramètres physico-chimiques et physiques qui contrôlent l'adhésion en milieu immergé des systèmes biopolymères tels que les propriétés viscoélastiques en volume, la charge et la topographie de la surface. Il aidera à mieux comprendre la bioadhésion et à concevoir des adhésifs efficaces en milieux aqueux.
Fichier principal
Vignette du fichier
104212_XU_2022_archivage.pdf (13.09 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-03971213 , version 1 (03-02-2023)

Identifiants

  • HAL Id : tel-03971213 , version 1

Citer

Zuxiang Xu. Underwater Adhesion between Biopolymer Model Surfaces and Hydrogels. Material chemistry. Université Paris sciences et lettres, 2022. English. ⟨NNT : 2022UPSLS020⟩. ⟨tel-03971213⟩
82 Consultations
125 Téléchargements

Partager

Gmail Facebook X LinkedIn More