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Abstract

Crack tips in silica glass in moist atmosphere are filled with an equilibrium liquid condensation of a few

hundred nanometers length. Not only does this local environment affect the chemistry of slow crack

propagation by stress corrosion, but it also has an important mechanical effect due to its highly negative

Laplace pressure. The present article presents an original technique for measuring the physical properties
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of the liquid condensation in terms of the Laplace pressure and critical condensation distance. This is

achieved by combining in-situ atomic force microscopy (AFM) measurements of the condensate length

and optical determination of the crack closure threshold in a double cleavage drilled compression (DCDC)

specimen.

1 Introduction

Crack tips in silicate glasses in moist atmosphere are invariably filled with a stable liquid phase, mainly

composed by water, due to the phenomenon of capillary condensation. This is due on one hand to the

extremely hydrophilic nature of glass surfaces, that are generally perfectly wet by water, and on the other

hand to the elevated stiffness of glass that makes cracks very sharp, the crack opening remaining limited

to less than a few nanometers up to a distance of hundreds of nanometers to few microns. Macroscopic

failure properties of materials being essentially governed by mechanisms taking place in the vicinity of the

crack tip, such a liquid condensate has a potential for playing an important role on the propagation of the

crack, in spite of its submicronic extension. First, it affects the chemistry allowing for crack propagation

at low velocity by determining the local environmental condition for the stress-corrosion reactions at the

crack tip. But it can also have a mechanical effect due to the highly negative Laplace pressure in the

condensate that acts on the crack walls and is responsible for the closure of the crack when the stresses

become lower than some threshold.

Although the presence of capillary menisci in glass fractures have been previously argued [?, ?] for

elevated relative humidity, proper characterization by in-situ AFM measurements has been only recently

achieved [?, ?]. An original application of AFM phase imaging techniques has made it possible to

measure the length L of the condensate as a function of the stress intensity factor (SIF) K, that controls

the crack opening profile1. For silica glass the condensation was shown to be at equilibrium with an

atmosphere of moist nitrogen and the critical condensation distance Hc was measured for several values

of the relative humidity [?]. Silica glass is particularly suited to investigate the physico-chemical properties

of the capillary condensate since the stress-corrosion reaction does not involve corrosion products nor ion

1The symbol K will stand for the macroscopic mode I stress intensity factor. When making the difference between

external end internal forces, this will be called KExt.
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exchange phenomena.

When measuring the K − L curves by AFM phase imaging as in Grimaldi et al [?], the range of

measurable values is insufficient for estimating the Laplace pressure. It was shown that neglecting the

mechanical effect of the Laplace pressure on the crack opening profile induces a bias in the estimate of

the critical distance Hc which was limited to within 15% [?]. The present work presents an important

extension of the previous technique, which allows for the concomitant determination of both the critical

condensation distance Hc and the Laplace pressure -∆P in the condensate2, and thus leads to a complete

unbiased characterization of the physical properties of the wetting liquid.

2 Mechanical effect of capillary forces

When a hydrophilic solid is in equilibrium with a moist atmosphere, capillary condensation is expected

to fill all gaps which are smaller than a critical distance Hc, that can be related to the Kelvin radius and

to the wetting properties [?]. For a sharp crack with an opening profile f(X) this implies a condensation

length L given by the condition (cf. Fig. ??):

f(X = L) = Hc (1)

Figure 1: Schematic representation of an open crack showing how a capillary condensate modifies the

crack opening profile near the crack tip.

2The Laplace pressure -∆P (∆P > 0) is the difference between the pressure of the condensed liquid phase and the moist

atmosphere at equilibrium. The pressure in the condensate is assumed to be constant and independent of the crack profile

geometry because its value is governed by the radius of curvature of the meniscus that is a function of relative humidity.

In addition, the fluid is at rest in the condensate, insuring a homogeneous pressure.
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When neglecting the effect of capillary forces, the crack opening profile can be modelled according to

the Irwin solution3:

δ = 2uy(X, 0) = f(X) =
2K

E′

√
8X

π
(2)

where E′ is an effective elastic modulus4, X the distance from the crack tip and uy(X, 0) the elastic

displacement of the crack lips. Using relation (??) we obtain the following relation for equilibrium K−L

curves:

L(K,Hc) =
π

8

(
E′Hc

2K

)2

(3)

that was used by Grimaldi et al [?] to estimate Hc without knowing the Laplace pressure. This relation

has the form of an inverse square dependence of L on K and does not account for a closure threshold.

Capillary forces can be modelled as the action of a constant internal negative Laplace pressure −∆P

between the crack lips when the crack opening is less than a distance Hc:

σyy =


−∆P δ ≤ Hc

0 δ > Hc

(4)

i.e. when the distance X from the crack tip is less than L. This internal force distribution is completely

equivalent to the Dugdale formalism for the cohesive zone in ductile fracture [?], and thus presents the

same solutions. The solutions for the crack opening profile can be written as the superposition of two

terms respectively related to the external and internal forces5:

3The Irwin solution is only valid in a close neighborhood of the crack tip, which is estimated to X < 15 µm in the

Appendix for our sample geometry. This is comfortably satisfied since the observed condensate lengths are always smaller

than 4 µm.
4E′ = E/(1−ν2) refers here to the plane strain Young’s modulus. Indeed, we make such an assumption in our 2D model

since most of the measurements such as the crack closure conditions will be measured in the mid plane of the sample, where

such plane strain conditions prevails. The characterization of the condensate properties at the free surface of the sample

will be justified in the discussion part.
5The procedure used here closely follows the approach described in Lawn (1993) p. 59 [?]. The problem is solved as the

superposition of two solutions. The superscript ‘Ext’ refers to the solution where only the external forces are applied, i.e.

the macroscopic forces applied to the sample grips, as in equation (??). The superscript ‘Int’ refers to the solution where

only the internal forces are applied, i.e. the microscopic capillary forces acting between the crack lips. The superscript

‘Tot’ refers to the sum of these two solutions, which corresponds to the real problem. We should stress that the term KTot
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KTot = KExt +KInt uTot
y = uExt

y + uInt
y (5)

For small condensate length6, the contribution of the internal forces can be written as [?]:

KInt = −
√

2

π
∆P

∫ L

0

dX√
X

= −∆P

√
8L

π
X,L ≪ c (6)

uInt
y (X, 0) =

KInt

E′

√
8X

π
− 1

2

KInt

E′

√
8L

π

√X

L
− 1

2

(
1− X

L

)
ln

∣∣∣∣∣∣
√

X
L + 1√
X
L − 1

∣∣∣∣∣∣
 (7)

The new condensation length can be obtained by applying the condition (??) to these new solutions7.

The equilibrium KExt − L curve becomes:

2uy(L) =
2KExt +KInt

E′

√
8L

π
= Hc (8)

This modelling predicts a crack closure threshold K0 when the condition KTot = KExt +KInt = 0 is

satisfied, i.e. KInt = −KExt = −K0. By combining Eqs. (??) and (??), the threshold can be expressed

as:

K0 =
√
E′Hc∆P (9)

This can be easily related to the adhesion energy [?]:

G0 = w =

∫ ∞

0

σyyduy =

∫ Hc

0

∆Pduy = ∆P ·Hc (10)

by using the equivalence G0 = K2
0/E

′. At crack closure, the condensate length assumes a maximum

value Lmax given by:

Lmax =
π

8

E′Hc

∆P
=

π

8

K2
0

∆P 2
(11)

Let us note that the leading term proportional to
√
X in the development of the crack profile vanishes

at the onset of crack closure, so that the crack opening evolves as uy(X) ≃ KExt

E′
2
π

X3/2

L in the vicinity of

corresponds to the loading felt by the silica at the crack tip.
6This corresponds to the small size yield approximation of the Dugdale model. The domain of validity of this approxi-

mation is L < 15 µm (cf. Appendix), which is also satisfied.
7The term in brackets in equation (??) can be easily verified to equal unity for X = L.
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the tip (X << L) for KExt = K0. We remark that K0 and Lmax naturally constitute two characteristic

values for K and L, emerging from the values of E′, Hc and ∆P . The KExt −L curves (??) can thus be

expressed in an elegant dimensionless form8:

L

Lmax
=

KExt

K0
−

√(
KExt

K0

)2

− 1

2

(12)

In the limit of large loadings (KExt >> K0), we recover from this formula the variations of L ∝ 1/K2
Ext

found when the mechanical effect of the condensate is neglected (Eq. ??). As discussed previously, it is

difficult to adjust both parameters by only using the KExt−L curves determined by AFM phase imaging.

However, if the closure threshold K0 is measured independently, it is then easy to adjust the parameter

Lmax on the KExt − L curves. This allows to have an unbiased and robust measurement of both the

critical condensation distance Hc and the Laplace pressure according to the inverse relations:

∆P = K0

√
π

8Lmax
Hc =

K0

E′

√
8Lmax

π
(13)

3 Experimental procedure and results

3.1 In-situ monitoring of slow crack propagation

Fractures are initiated and propagated on a DCDC setup [?] at a constant temperature of (25.5±0.5)◦C in

a leak-proof chamber under an atmosphere composed of air and water vapor at a given relative humidity

level RH = (39±2)%. The parallelepipedic DCDC samples (4x4x40 mm3, with 10 µm tolerance) of pure

silica glass (Suprasil 311, Heraeus, Germany) were polished to a RMS roughness of 0.25 nm (for an area

of 10x10 µm2) and a hole of radius R = 0.5 mm was drilled at their center to trigger the initiation of

8Multiplying equation (??) by ∆p we obtain:

E′Hc∆P = (2KExt +KInt)∆P

√
8L

π

K2
0 = (2KExt +KInt)(−KInt)

K2
Int + 2KIntKExt +K2

0 = 0

KInt = −KExt +
√

K2
Ext −K2

0 = −∆P

√
8L

π

and using equation (??) we easily obtain the dimensionless form (??).
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two symmetric fractures of length c shown in Fig. ??. The hole’s radius is evaluated precisely for each

sample by optical microscopy.

Figure 2: Experimental setup: (a) Sketch of the DCDC geometry; (b) picture of the experiment.

For an applied external compressive stress σ, the SIF KExt is determined as a function of the crack

length according to the Eq. (??) in the Appendix. By coupling optical and atomic force microscopy

(Nanoscope 3a, Veeco Metrology Inc, Santa Barbara, CA), the crack propagation velocity can be measured

from 10−5 m/s down to 10−12 m/s. The details of the technique can be found in [?].

3.2 Measurement of condensate length by AFM phase imaging

AFM observations are done in tapping mode with AFM tips having a nominal radius of Rtip ∼ 10 nm

(DNP, MPP-11100-10, Veeco Metrology Inc, Camarillo, CA). The tip is oscillated at constant frequency

ω (close to the resonance frequency ω0). The oscillation amplitude A is kept constant to a set value

thanks to a feedback loop controlling the vertical position of the scanner. The phase delay (ϑ ∈ [−π : 0])

between the stimulation and the oscillation of the tip can be related to the energy ED dissipated per

cycle by the tip-surface interactions [?]:

ED =
πkA2

Q

(
− A

A0
sinϑ− ω

ω0

)
(14)

where k, Q, A0 are respectively the stiffness of the AFM cantilever, the quality factor, and the free

resonance amplitude. Fig. ?? shows typical height and phase images of the crack tip. The crack plane

intersects perpendicularly the observed external surface of the sample. The region along the crack,

characterized by a strong phase contrast, corresponds to the portion of the crack cavity which is filled by

7



(b)(a)

Condensate

 length

Figure 3: Typical AFM height (a) and phase (b) images of the crack tip for a fracture propagating from

top to bottom of the image (400x400 nm2). The scale range is respectively 5 nm and 5◦.

a condensed liquid phase. According to Eq. (??), the phase contrast on the condensate region corresponds

to an increase in the energy dissipated by the tip-sample interaction [?]. Under humidity, the presence of

thin water films on both the external sample surface and the AFM tip entails energy dissipation due to

the combination of two phenomena: (1) the formation and rupture of a capillary bridge at each oscillation

of the AFM tip [?] and (2) the visco-elastic displacement in the thin films [?]. The dissipated energy

is very weak when scanning the glass surface, but it is greatly enhanced when the AFM tip crosses a

portion of the crack tip filled with liquid water [?]. The resolution of the AFM technique does not allow to

measure the opening of the crack accurately (a few nanometers here), but it allows to measure the length

L of the condensed region, ranging between 100 nm and 400 nm in our experiments, with an incertitude

lower than 10 nm. Each estimate of the condensate length L is the average of three measurements on

images with an optimized scan size. The measurement was shown not to be dependent on the AFM

working conditions, nor on the details of the AFM tip shape and its chemical nature within the given

incertitude. The weak crack propagation velocity during the test was previously shown not to affect the

equilibrium length of the condensate [?]. In order to avoid aging phenomena and to provide an optimum

mode I loading condition, it is preferable to make each determination of the KExt − L curve on a new

specimen just after the crack initiation. The results are reported in Fig. ?? for five different samples and

we remark an excellent reproducibility.
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Figure 4: Condensate length L as a function of the stress intensity factor KExt obtained by AFM.

3.3 Measurement of crack closure threshold by optical microscopy

It is well known that when the external stresses are reduced below some threshold, cracks in glass are

observed to progressively close [?, ?]. In order to perform the measurement of the crack closure by using

the same loading setup and the same environmental conditions as for the KExt − L curves, we can use

the optical microscope associated to the AFM system. When measuring KExt−L curves, the crack front

is vertical in order to image the crack tip by AFM at the free surface of the sample (cf. Fig. ??). In order

to observe the crack closure, the DCDC sample is rotated by 90◦, the fracture front laying horizontally

according to Fig. ??. The white light source illuminates the sample vertically, after passing through the

optical axis of the CCD camera and after being reflected by an inclined mirror in the AFM head. The

field of view of the camera is 920 µm and the resolution is limited by the pixel size to 10 µm.

σσ

2R

c

Figure 5: Sketch of the DCDC sample arranged to observe the crack closure by optical microscopy

(horizontal crack plane)
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For the same reasons discussed for KExt−L curves, it is again preferable to make each determination

of the closure threshold on a new specimen just after the crack initiation. The new crack is propagated

for a convenient crack length (c > w = 2 mm) until the propagation velocity becomes less that 10−9

m/s, in order to avoid any further optically observable propagation during the measurement. Then, we

continuously decrease the stress to a rate of 0.12 MPa/s and monitor the evolution of the crack front

position, and thus the crack length, with an acquisition frequency of 1 image/second as reported in Fig.

??.

0 200 400 600 800 1000 1200
1.5

2

2.5

3

3.5

4

F (N)

c 
(m

m
)

2.5 3 3.5

0.2

0.4

0.6

0.8

c (mm)

G
Ext

 (J/m2)

Figure 6: Evolution of the apparent crack length c as a function of the external decreasing load F . In the

inset the same data are plotted in terms of the strain energy release rate GExt = K2
Ext/E

′ as a function

of the apparent crack length c (NB: the axes are switched because c should now be considered as the

independent variable). The crack closure threshold G0 corresponds to the intersection between the two

regimes.

According to the modelling proposed in section ??, the crack opening profile undergoes two regimes:

in a first stage of the unloading the crack length will remain constant, while the crack opening profile

is progressively reducing and the condensate length is increasing. When the external SIF reaches the

threshold value K0, the contribution of internal and external forces is perfectly balanced, the crack tip

singularity vanishes and the condensate length assumes the maximum value Lmax. By further decreasing

the external load the system enters another regime where the crack closes progressively. The threshold

value K0 is then accurately determined by measuring the load and the crack length9 at the transition

9The exact position of the crack tip can not be perceived optically since the reflectivity of the glass-water interface is

very weak, but Lmax will be shown to be of the order of 4 µm, which is smaller than the optical resolution.
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point (Fig. ??). The average over three tests in moist atmosphere with RH = (40± 3)% is:

K0 = (0.114± 0.006) MPa.m1/2 G0 = (180± 20) mJ/m
2

where we used the elastic moduli of silica glass10 E = (72± 2) GPa and ν = (0.170± 0.005).

3.4 Estimate of the Laplace pressure

Although none of the previous techniques allows the complete solution of the problem, their combination

does. Indeed, we can insert the measured value of K0 = (0.114 ± 0.006) MPa.m1/2 into equation (??)

and adjust the single missing parameter Lmax on the KExt − L curves. The fit is well conditioned and

the result is shown in Fig. ??. We find:

Lmax = (4± 1) µm

By using equations (??) we determine the values of the critical distance Hc and of the Laplace pressure

∆P :

Hc = (5.0± 0.7) nm ∆P = (36± 5) MPa

4 Discussion and Conclusion

Although several measurements exist in the literature for the closure threshold in glass [?, ?, ?, ?], it is

the first time that they are combined with an in-situ observation of the length of a liquid condensate.

This allows us providing both a sound physical interpretation of the crack closure phenomenon and a

complete characterization of the physical parameters of the wetting liquid in terms of its Laplace pressure

and critical condensation distance.

10Silica glass is known to exhibit non-linear elastic deformation according to [?]:

∆E

E
= (1 + 5.75ϵ)

However, in the present analysis the crack tip stresses are limited by the Laplace pressure ∆P ∼ 40 GPa (ϵ ∼ 0.05%). The

maximum effect on the elastic modulus is thus of the order of 0.3%, which is negligible for our purposes.
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Figure 7: Fit of the KExt − L curve according to equation (??). The AFM measurements of Fig. ?? are

combined with the optical measurements of the threshold K0 (vertical dashed line). The black square

symbol corresponds to the estimated value of Lmax.

The value of the adhesion energy G0 = (180±20) mJ/m
2
is in good agreement with other determina-

tions in the literature ranging between 100 and 200 mJ/m2 (ibid.), which are generally roughly compared

to the energy required to create two water surfaces (2γw ∼ 144 mJ/m2). According to more sophisticated

modeling [?], the adhesion energy in perfect wetting conditions is expected to exceed the surface tension

term.

Our simple modelling accounts for the crack closure by the action of capillary forces and it neglects

other kinds of interactions between the solid surfaces. This is also in agreement with the observed

independence of the closure threshold on the glass nature [?], and with similar conjectures formulated by

Rayleigh [?] and Lawn et al. [?]. Several other interpretations of the crack closure have been proposed

ranging from hydrogen bond interaction between adsorbed water molecules to alkali ion bridging or partial

reformation of SiOSi bonds between opposite crack surfaces [?]. However, they result from observations

of the crack closure behavior on alkali containing glasses after several aging or thermal treatments. The

present study avoids all ambiguity since it is performed on freshly fractured silica glass samples in very

clean conditions. Although the cracks were produced by stress-corrosion, no corrosion products are

expected at ambient conditions in silica since the silanol groups remain bonded to the crack walls and

our KExt − L measurements were stable on several days periods. In a previous paper [?], we reported
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larger values for the condensate length and critical distance, but these were taken on a sample that had

been aged for one year in primary vacuum. A detailed study of the aging behavior is out of the scope of

the present work and will be published later.

It is the first time that the Laplace pressure is measured for a capillary condensation inside a crack

tip. We remark that the reported value ∆P = (36 ± 5) MPa corresponds to a very negative pressure

inside the liquid phase and the remarks given above suggest that this condensed phase is very close to

pure water. The stability of this phase is provided by the high degree of confinement which prevents

nucleation of vapor bubbles [?]. Although the largest reported measured negative pressures are around

-140 MPa [?], the most reliable ones are around -20 MPa [?]. By combining this technique with a low

humidity environmental chamber, it will be possible to obtain important data on the behavior of water

at very negative pressure [?, ?].

An important remark concerns the opportunity of comparing KExt − L curves that are measured

at the sample surface with threshold measurements performed by observing the crack front in the bulk

of the sample. Our modelling of the mechanical behavior of the DCDC sample, and in particular, the

determination of the value of SIF, has been performed by a two dimensional plane strain analysis, which

describes accurately the behavior in the bulk of the specimen. However, the recent application of digital

image correlation techniques to the measurement of the surface displacement fields near the crack tip in

our DCDC specimens have shown en excellent agreement between the values of the stress intensity factor

determined at the surface and the values determined by a macroscopic determination according to two

dimensional models of the DCDC sample [?].

Incidentally, we remarked a significant hysteresis between the closure and reopening behavior of the

crack as previously observed in Refs. [?, ?, ?]. Moreover, while our equilibrium modelling would predict

a constant stress intensity factor during the progression of the crack closure, a decrease of the threshold

is observed during the closure at constant load rate (cf. Fig. ??), followed by a progressive increase

when the loading process is arrested. These observations suggest the presence of irreversible processes

that are not simply related to a velocity dependence as suggested in [?]. For that reasons, we limited our

determinations of the threshold to the onset of the first closure, while leaving these interesting observations

to future investigations.

The present results cast a clearer light on the physical mechanisms of crack closure in glasses, which
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are intimately related to capillary forces. The elevated stiffness of these materials along with the high

degree of chemical inertness of silica glass have allowed original and reproductible measurements of the

condensate length. This precious ingredient, combined with the measurement of the adhesion energy

through the crack closure threshold, allows obtaining an estimate of the Laplace pressure, and thus a

complete characterization of the physical properties of the condensed phase.
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Appendix: 2D modelling of the DCDC specimen and small con-

densate approximation

For a DCDC specimen of dimensions 2w×2t×2ℓ, containing a hole of radius R and two symmetric cracks

of length c (cf. Fig. ??), the stress intensity factor KExt caused by the external loading σ = F/4wt can

be accurately approximated by the following dimensionless expansion in terms of the ratios c/R and w/R

[?]:

σ
√
πR

KExt
=

[
C0 + C1

w

R
+ C2

(w
R

)2]
+

[
C3 + C4

w

R
+ C5

(w
R

)2] c

R
(15)

with the set of parameters: C0 = 0.3156, C1 = 0.7350, C2 = 0.0346, C3 = −0.4093, C4 = 0.3794, and

C5 = −0.0257 for 2.5 ≤ w/R ≤ 5 and w < c < ℓ− 2w. For our geometry, this reduces to:

σ
√
πR

KExt
= 3.547 + 0.650

c

R
(16)

In the absence of internal forces, the crack opening profile was shown [?] to be described by a fifth

order Williams expansion [?] with 1% accuracy when X < 0.85w = 1.7 mm:
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uy(X) =
KI

E′

√
8

π

√
X

(
1 + 1.319

(
X

w

)
+ 0.515

(
X

w

)2
)
. (17)

This expression remains valid as far as the effects of the finite size of the specimen are not relevant, i.e.

for 2.5w−R < c < L− 2.3w−R. The range of 1% validity of the first order term, corresponding to the

Irwin equation (??) used in the present work, is thus X < 0.0076w = 15 µm [?].

The stress intensity factor caused by a generic distribution of internal forces along the crack faces can

be calculated according to the weight function procedure developed by Bueckner [?]:

KInt =

∫ c

0

h(c,X)σyy(X) dX (18)

where the weight function h(c,X) does not depend on the stress distribution, but only on the geometry

of the specimen. The mode I weight function for the DCDC geometry were approximated by Fett et al.

[?] by finite element simulation, and can be rewritten according to our formalism:

hI(c,X) =

√
2

πX

(
1 +D

(I)
1

X

c
+D

(I)
2

(
X

c

)2
)

(19)

where DI
1 and DI

2 were fitted by the following development in the range 0 ≤ c/R ≤ 8:

D
(I)
1 = −3.97 + 1.466

c

R
+ 4.533 exp

(
−0.291

c

R

)
(20)

D
(I)
2 = −0.246 + 0.222

c

R
+ 0.529 exp

(
−2.08

c

R

)
In our measurements the crack length ranges between 3 and 5 mm, corresponding to c/R ranging

between 5.66 and 9.43. Although the upper end is slightly higher than the domain where the former

development where adjusted, the behavior of the equations (??) is quite linear near c/R = 8. It is thus

sound to extrapolate for estimate purpose the values D
(I)
1 = 10.152 and D

(I)
2 = 1.848 that correspond to

the largest corrections. The range of 1% validity of the small condensate approximation, corresponding to

the first term of equation (??) is thus X < 15 µm for our DCDC geometry. Since this domain of validity

is always larger than the condensate length, this justifies the use of a global first order approximation in

all our modelling.
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[3] Wondraczek L, Dittmar A, Oelgardt C, Célarié F, Ciccotti M, Marlière C (2006) Real-time observa-

tion of non-equilibrium liquid condensate confined at tensile crack tips in oxide glasses. J Am Ceram

Soc 89:746

[4] Ciccotti M, George M, Ranieri V, Wondraczek L, Marlire C (2008) Dynamic condensation of water

at crack tips in fused silica glass. J Non-Crist Solids 354:564

[5] Grimaldi A, George M, Pallares G, Malière C, Ciccotti M (2008) The crack tip: a nanolab for

studying confined liquids. Phys Rev Lett 100:165505

[6] Ciccotti M, Pallares G, Ponson L, Grimaldi A, George M (2009) Mechanical effect of capillary forces

in the crack tip of a DCDC specimen. Proceedings of the 12th International Conference on Fracture,

July 12-17, 2009, Ottawa, Canada

[7] Charlaix E, Ciccotti M (2010) Capillary condensation in confined media. Handbook of Nanophysics:

Principles and Methods. Ed. Klaus Sattler, CRC Press 12–1

[8] Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8:100

[9] Burns SJ, Lawn B (1968) A simulated crack experiment illustrating the energy criterion. Int J Fract

Mech 4:339

[10] He MY, Turner MR, Evans AG (1995) Analysis of the double cleavage drilled compression specimen

for interface fracture energy measurements over a wide range of mode mixities. Acta Metall Mater

43(9):3453

[11] Célarié F (2004) Ph.D. thesis, Université Montpellier 2, France

[12] Cleveland JP, Anczykowski B, Schmid AE, Elings VB (1998) Energy dissipation in tapping-mode

atomic force microscopy. Appl Phys Lett 72:2613

16



[13] Zitzler L, Herminghaus S, Mugele F (2002) Capillary forces in tapping mode atomic force microscopy.

Phys Rev B 66:155436

[14] Nony L, Cohen-Bouhacina T, Aime JP (2002) Dissipation induced by attractive interaction in dy-

namic force microscopy: contribution of adsorbed water layers. Surf Science 499:152

[15] Michalske TA, Fuller ER, (1985) Closure and repropagation of healed cracks in silicate glass. J Am

Ceram Soc 68:586

[16] Stavrinidis B, Holloway DG (1983) Crack healing in glass. Phys Chem Glasses 24:19

[17] Brckner R (1970) Properties and structure of vitreus silica. J Non-Cryst Solids 5:123

[18] Wiederhorn SM, Townsend PR (1970) Crack healing in glass. J Am Ceram Soc 53:486

[19] Wan KT, Smith DT, Lawn BR (1992) Fracture and contact adhesion energies of mica mica, silica

silica, and mica silica interfaces in dry and moist atmospheres. J Am Ceram Soc 75:667

[20] Rayleigh L (1937) Optical contact. Nature 139:781

[21] Israelachvili JN (1985) Intermolecular and Surface Forces. 2nd edition, Academic Press, New York

[22] Zheng Q, Durben DJ, Wolf GH, Angell CA (1991) Liquids at large negative pressures - water at the

homogeneous nucleation limit. Science 254:829

[23] Caupin F, Herbert E (2006) Cavitation in water: a review. CR Physique 7:1000

[24] Yang SH, Nosonovsky M, Zhang H, Chung KH (2008) Nanoscale water capillary bridges under deeply

negative pressure. Chem Phys Lett 451:88

[25] Caupin F, Herbert E, Balibar S, Cole MW (2008) Comment on ’Nanoscale water capillary bridges

under deeply negative pressure’ [Chem Phys Lett 451 (2008) 88]. Chem Phys Lett 463:283

[26] Han K, Ciccotti M, Roux S (2010) Measuring Nanoscale Stress Intensity Factors with an Atomic

Force Microscope. EPL 89:66003

[27] Pallares G, Ponson L, Grimaldi A, George M, Prevot G, Ciccotti M (2009) Crack opening profile in

DCDC specimen. Int J Fract 156:11

17



[28] Williams ML (1957) On the stress distribution at the base of a stationary crack. ASME J Appl Mech

24:109

[29] Bueckner HF (1970) A novel principle for the computation of stress intensity factors. Z Angew Math

Mech 50:529
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